
A Data Miner analyzing the Navigational Behaviour of Web

Users

Myra Spiliopoulou� Lukas C� Faulstich� �� Karsten Winklerk

Abstract

Web site design is currently based on thorough investigations about the interests of web site
visitors and on less investigated assumptions about their exact behaviour� Concrete knowledge
on the way visitors navigate in a web site could prevent disorientation and help owners in
placing important information exactly where the visitors look for it�

Our Web Utilization Miner tool can provide such knowledge� The general problem we
address is� Given a number of traversed paths� discover subpaths with structural or statistical

properties of interest� In fact� we anticipate that not all nodes in a subpath are of equal
importance� Hence� we allow that subpaths having only some nodes in common be combined
into a pattern that shows the desired properties as a whole�

To capture the ambiguous expressions of this problem� we provide a powerful mining
language� by which the expert can specify the desired structural and statistical properties of
the patterns to be constructed� To e�ciently discover paths which� when combined� result in
such desirable patterns� we use an innovative technique based on the processing of aggregated
sequences� Several optimization steps are performed to further reduce the mining search space�

INTRODUCTION

The emerging need for well�organized sites is common to non�pro�t institutions and commercial
providers of goods� Both are interested in encouraging visitors to access pages they consider impor�
tant� in exhibiting the links between relevant pages and in preventing disorientation� Data mining
is the appropriate methodology for systematically analyzing the behaviour of past visitors and
taking decisions on what has to be improved�

Analysis of user behaviour has two aspects� one concerning the interests of the users and the
information they access� the other concerning the way of accessing this information� The �rst
aspect is addressed by techniques for the establishment of user pro�les and is not peculiar to web
usage� For instance� student pro�les are considered in intelligent tutoring systems� The second
aspect is addressed by techniques analysing web server logs�

We argue that those two aspects are complementary� since a web user is characterized by her
interests and by her navigational behaviour� For example� consider a user that explores the links
in a web site to �nd every bit of information of potential interest and a user that prefers keyword
search� Those two users need fundamentally di�erent support� even if both of them are interested
in solar energy collectors� chess and medieval sculpture� In this study� we concentrate on the second
aspect of user support� namely on the analysis of user navigational behaviour�

There is a plethora of commercial tools performing some basic analysis of web log �les� They
mostly provide statistical results on tra�c load and access to pages or small page sequences� A

�Institut f�ur Wirtschaftsinformatik� Humboldt�Universit�at zu Berlin� Spandauer Str� �� D������ Berlin�
myra�wiwi�hu�berlin�de

�Institut f�ur Informatik� Freie Universit�at Berlin� Takusstr� 	� D��
�	� Berlin� Germany�
faulstic�inf�fu�berlin�de
��Supported by the German Research Society� Berlin�Brandenburg Graduate School on Distributed Information

Systems �DFG grant no� GRK ����
kInstitut f�ur Wirtschaftsinformatik� Humboldt�Universit�at zu Berlin� Spandauer Str� �� D������ Berlin�

kwinkler�wiwi�hu�berlin�de

�

detailed discussion can be found e�g� in �Za	
ane et al�� ����� concluding to their inappropriateness
for thorough analysis of access patterns�

In this study� we propose the exploitation of mining technology to discover access patterns
with �interesting� statistical properties and present our Web Utilization Miner �WUM� designed
to this purpose� The problem we aim to resolve is� Given a number of traversed paths� discover

subpaths with structural or statistical properties of interest� This includes subpaths going through
pages with given properties� being traversed by a minimum or maximum number of users and
showing a reliable statistical con�dence between any two or only some of the pages in the path�

We purposely use terms like �some� and �important� instead of �frequent�� to stress the fact
that statistical dominance is not always of interest� On the contrary� statistically dominant patterns
rarely bring new knowledge to the expert� The characteristics that make a pattern interesting are
of more general nature� For instance� the web owner may be interested in paths rarely followed or
at paths crossing pages that refer to a common subject� Such paths would give more indications of
pitfalls in the design of the site than statistically dominant ones� WUM supports the speci�cation
of such generic characteristics and identi�es only patterns conforming to them�

The mining model of WUM is innovative in two aspects� First� it anticipates the fact that
the �importance� indicators in user behaviour go far beyond than frequent access to some pages�
So� it can be instructed to discover patterns of statistical dominance� as conventional miners do�
but also supports the speci�cation of subjective criteria� Finally� it can achieve high performance
improvements over conventional miners by processing aggregated sequences instead of raw web
log data and by applying optimization steps during the mining process�

In the next section� we discuss data preparation in WUM and describe how visitor transac�
tions are modelled as sequences and aggregated into an internal storage structure� Our pattern
discovery mechanism is described thereafter� In the sequel� we present the current status of our
implementation and its visualization module� We then discuss related work on web usage mining
and sequence mining before coming to conclusions and outlook�

AGGREGATION OF THE RECORDED VISITOR DATA

WUM is applied on aggregated data� Hence� after performing the classical preparation steps
�Cooley et al�� ����b� we merge the data into an �Aggregated Log�� as described below�

Data Preparation

An entry in a web server log contains the timestamp of a traversal from a source to a target
page� the IP address of the originating host� the type of access �GET or POST� and other data�
Many entries are considered uninteresting for mining and removed� This �ltering is application
dependent� However� in most cases �and in WUM� accesses to images are �ltered out�

The remaining entries must be grouped by the visitor that performed them� Cookies or similar
mechanisms can be exploited to identify a visitor a priori� Alternatively� we can make a posteriori
assumptions on how close in time two consecutive entries might be or what pages should they refer
to in order to come from the same person� An investigation on such approaches can be found in
�Cooley et al�� ����b� In WUM� we currently assume that consecutive accesses from the same host
during a certain time interval come from the same user� However� a more sophisticated mechanism
can be used instead� without a�ecting the subsequent steps of data preparation�

Once we assess the originator of each entry� we group consecutive entries to a user session or
�transaction�� Di�erent grouping criteria are modelled and compared in �Cooley et al�� ����b� We
support two criteria� A new session starts when �i� the duration of the whole group of traversals ex�
ceeds a time threshold� similarly to �Cooley et al�� ����b� or �ii� the elapsed time between two con�
secutive traversals exceeds a threshold� Dissimilarly to �Cooley et al�� ����b� �Chen et al�� �����
we do not observe a backward traversal as the start of a new session� because it may be part of a
guided or explorative tour �Tauscher and Greenberg� �����

�

Transforming Transactions to Trails

A transaction output at the end of the preparation phase is a group of entries� Unnecessary data
have been removed� so that only the timestamp� the source and the target page are retained� We
now compress each group into the sequence of accessed pages� We call this sequence a �trail� or
�path��

A set of visitor transactions produces a collection �multiset� of trails� since multiple visitors
may access the same pages in the same order� We group them into subcollections of identical trails�
The �tra�c� of a trail is then the cardinality of the subcollection to which it belongs�

Example �� Let a� b� c� d� e� f be the pages of a web site and T� � T� be transactions on it� with
entries of the form �timestamp� sourcePage� targetPage��

b

c

d

a e

f

A tiny web site

T� T� T� T�
��� ���� a� b� ��� ���� a� b� ��� ���� b� d� ��� ���� a� b�
��� ���� b� e� ��� ���� b� e� ��� ���� d� b� ��� ���� b� e�

��� ���� b� e� ��� ���� e� f�
� a� b� e � � a� b� e � � b� d� b� e � � a� b� e� f �

The tra�c of trail � a� b� e � is �� while the tra�c of � b� d� b� e � and of � a� b� e� f � is �� Note
that the trail � b� c� b� e � contains a circle� page b has been visited twice� �

Aggregating Trails

In Example �� we see that some trails have common pre�xes� For instance� trail � a� b� e� f �
occurs only once� but its pre�x � a� b� e � has been accessed � times� If we merge such trails
together� we can put more statistical information in a compact storage structure�

An �aggregate tree� is a tree constructed by merging trails with the same pre�x� A tree node
corresponds to a page in a trail and is annotated with the number of visitors having reached this

page across the same trail pre�x� This value is the �support� of a node� computed in the context of
the node�s predecessors up to the aggregate tree�s root� The tra�c of a trail is then implemented
as the support of the tree leaf corresponding to the last node of the trail�

Example �� We now extend our previous example to model a larger number of trails into aggre�
gate trees� At the left side of Fig� � we show the visitor trails with their tra�c�

t1.
t2.
t3.
t4.
t5.
t6.
t7.

<b,d,b,e> (4)

<a,b,e> (8)
<b,d,b,c> (2)
<b,c,e> (7)
<a,b,e,f> (3)
<a,d,b> (10)

 <b,e,f> (1)

(number of visitors per trail)
Recorded trails

(Page:a, Occurence:1),Support:21

dummy node

(a,1),21
(f,1),3(e,1),11(b,1),11

(b,1),10(d,1),10

(^,1),35

(b,1),14

(c,1),2

(e,1),4
(b,2),6(d,1),6

(f,1),1(e,1),1

(e,1),7(c,1),7

The aggregate tree in the Aggregated Log

Figure �� Constructing aggregate trees

b is the �rst page of trails t�� t�� t� and t�� �b� �� indicates the �rst occurence of b� �b� �� denotes
a revisit in t�� t�� We retain page occurences explicitly on reasons of e�ciency�

By adding up the visitors of trails t�� t�� t�� t�� we compute �� as the support of �b� ��� Similarly�
the support of �a� �� is ��� In t�� t�� page b was visited after a� the respective aggregate tree node
has a support of ��� The root node � is a dummy one� needed to merge all trails into one aggregate
tree� Its support is the total number of recorded traversals�

�

Note that the trails starting at a cannot be merged with those starting at b� If we are interested
in the number of visitors having traversed � b� e� f � irrespectively of their starting node� we
encounter � visitors� � of which started at a before going to b� To build such a pattern we must
merge subbranches� This is done by the miner module described in the next section� �

Aggregate Trees in Persistent Storage

WUM is not applied to the collection of trails but to the large aggregate tree� into which they
are merged� We refer to this tree as the �Aggregated Log� hereafter� Clearly� a trail that occurs
� times� appears in the Aggregated Log only once� Moreover� for any two or more trails with
common pre�x� the pre�x is stored in the Aggregated Log only once� the supports of its nodes
adjusted respectively� This does not only reduce the storage requirements� It also accelerates the
mining procedure by reducing the size of the input log�

The Aggregated Log can be built once from a web log or be expanded periodically by the
new web log entries� In the latter case� the trails are formed as described above and merged into
a small aggregate tree� This tree is then merged with the existing Aggregated Log by merging
branches with common pre�x� adjusting the supports of the common pre�x nodes and extending
the branches with new subbranches to accommodate the non�common nodes�

PATTERN DISCOVERY OVER AGGREGATED DATA

The Aggregated Log contains statistically and structurally aggregated information on web traver�
sals in a tree form� The navigation patterns to be discovered are themselves graph structures�
Hence� instead of invoking a mechanism similar to those proposed in �Srikant and Agrawal� �����
�Mannila and Toivonen� ����� we build a new mechanism discovering� matching and merging sub�
branches of the Aggregated Log into a navigation pattern�

A �navigation pattern� is a generalization of the aggregate tree introduced in the previous section�
In particular� it is a graph built according to a pattern descriptor� A �pattern descriptor� is a
sequence of identi�ers and wildcards� where an identi�er refers to an occurence of a web page� The
complete formalism on navigation patterns can be found in �Spiliopoulou� �����

The navigation pattern is built by discovering the tree branches in the Aggregated Log that
conform to the pattern descriptor and merging them at �i� the common pre�xes and �ii� the nodes
bearing the identi�ers referenced in the descriptor� The supports of those new nodes are computed
by adding up the supports of the merged nodes� the supports of the other nodes remain intact�

Example �� Let the aggregate tree of Fig� � be our Aggregated Log� Let � �b� ��� �� �e� ��� be a
pattern descriptor� It speci�es that we select the �sub�branches containing the �rst occurence of
page b� i�e� �b� ��� and then look among them for those containing also a �rst occurence of e� i�e�
�e� ��� There may be any number of nodes in�between those two� In the Aggregated Log shown at
the left side of Fig� �� we have marked the subbranches thus selected� All but one of them also
contain �e� ���

The navigation pattern is built by copying those branches into a new graph and merging� �i�
all nodes referring to �b� ��� �ii� all nodes referring to �e� �� preceded by �b� ��� so that the order
speci�ed by the descriptor is preserved� �iii� all nodes belonging to common pre�xes between the
two nodes �none in this example�� Then� we compute the support of each such new node by adding
the supports of the merged nodes�

In Fig� �� we see how the navigation pattern on the right is produced from the Aggregated
Log via an intermediate structure� This structure consists of the subbranches conforming to the
pattern descriptor� The nodes to be merged are marked� �

The reader might ask whether the nodes corresponding to the wildcards of the pattern de�
scriptor should be part of the navigation pattern� Indeed� maintaining those nodes implies a
more complex theoretical framework than in other sequence miners �Agrawal and Srikant� �����

�

(d,1),6
(c,1),2

(b,2),6

(e,1),7(c,1),7

(f,1),1(e,1),1

(e,1),4(b,1),14

(^,1),340

(b,1),11 (f,1),3(e,1),11
(a,1),21

(b,1),10(d,1),10

<(b,1),*,(e,1)>

(b,1),14

(b,1),11 (e,1,),11

(b,2),6
(e,1),4

(c,1),7

(e,1),1

(e,1),7

(b,1),10

(d,1),6

(d,1),6
(e,1),23

(c,1),7

(b,2),6
(b,1),35

Figure �� Constructing navigation patterns from the Aggregated Log

�Mannila and Toivonen� ����� �Srikant and Agrawal� ����� �Zaki� ���� and an increase in pro�
cessing cost� However� we argue that the complete navigation pattern bears invaluable information
for the mining expert and the web site designer� The example query of Fig� � in the section on the
current WUM prototype is intended to depict this

Which Navigation Patterns are Important to Discover�

We have de�ned a navigation pattern as a graph built according to a pattern descriptor� Obviously�
the patterns to be discovered must be described according to more general criteria� In particular�
we need a way of specifying the �interestingness� �term in �Piateski�Shapiro and Matheus� �����
of navigation patterns� as subjectively conceived by the mining expert�

We suggest that� informally� �interestingness� is a speci�cation concerning �A� the content� �B�
the structure and �C� the statistics of navigation patterns� Given an �interestingness descriptor��
we must build all conformant navigation patterns by assigning appropriate values to all components
of the statement not explicitly speci�ed�

In WUM� an �interestingness descriptor� is a query in our mining language� MINT described in
�Spiliopoulou and Faulstich� ����� MINT supports predicates of type �A� on the properties of web
pages �currently� URL string only� and on their occurences� of type �B� on the relative positions
of the pages in the pattern� as dictated by a �template�� and of type �C� on the statistics of the
pattern nodes�

Example �� A simple query on web usage would be�Where do visitors accessing pages of a certain

group usually go afterwards� Or equivalently� Given a certain group of already visited pages� what

are the pages preferred thereafter and how are they reached�

This statement produces a �template� B�X� where B is a variable standing for the pages in the
group and X for the preferred pages� If preference is conceived as statistical probability of at least
���� a predicate X�support � B�support �	
�� is needed�

The expert might further require that the members of the B group should have been accessed
a signi�cant number of times in this pattern� e�g� ���� i�e� B�support �	 ��

Finally� if only the �rst access is of interest for B� the occurence number of B must be �� i�e�
B�occurence	�� The complete query Q� in MINT is�

select T

from node as B X�

template B�X as T

and B�support �	 �

and B�occurence 	 �

and X�support � B�support �	
��

�

In the next subsection� we will show how this query is executed by our miner against the Aggregated
Log of Fig� �� �

What is the di�erence between the above query and the association rule B � X with con�dence
��� and support of B at least ��� First of all� association rules have no order� To see the impact
of this� consider the rule b� a� We can see from Fig� � that the �rst occurence of b has a support
of ��� Moreover� the �� visitors to a also visited b across two di�erent paths� For an association
rule� this is equivalent to saying that �� of the visitors of b also visited a� In fact� the probability
P �ajb� � ����� � ���� Thus� the association rule b � a is true with con�dence ���� although
nobody followed a path from b to a�

Second� the output of a MINT query is a navigation pattern� in which also the intermediate
nodes are contained� Hence� the expert can observe the common and di�erent parts of the paths
between the nodes of interest�

More examples on the formulation of MINT queries� as well as the MINT syntax� can be found
in �Spiliopoulou and Faulstich� ����� Note that despite the simplicity of those examples� there is
no limitation on the number of variables in the template� nor on the predicates combining their
statistical characteristics�

Processing a Mining Query

To process queries in MINT� we distinguish the three types of predicates� as described in the
subsection �Which navigation patterns are Important to Discover��� Recall that type A predicates
refer to invariant properties of the web pages in the log� type B predicates are dictated by the
query template� and type C are predicates on statistics�

A simpli�ed version of our mining algorithm in pseudocode is shown in Fig� � for a generic
template � �� v�� �� � � � � �� vk� � �� A faster but more resource consuming variation is proposed in
�Spiliopoulou� ����� Obviously� the algorithm does not change if some wildcards are omitted� We
explain those steps below�

�� Generating the set of all descriptors� In the �rst step of our algorithm� we traverse the
Aggregated Log and generate the candidate descriptors by binding the template variables� These
descriptors involve pages and occurence numbers that satisfy the type A and type B predicates�

Example �� To explain the �rst step of our algorithm� we consider the following query Q��

select T

nodes as X Y� template XY as T

where X�url 	 �M�html�

and X�support �	 �

and Y�occurence 	 �

Q� �nds all patterns of two adjacent nodes� the �rst of which refers to the page �M�html� and
has a support of at least ���� while the second one refers to the second occurence of some page�
Note that Q� is purposely very restrictive� so that we can show how the �rst step of our algorithm
works�

Let � xywz � be a branch in the Aggregated Log� such that x � ���M�html�� ��� ���� y �
���Z�html�� ��� ���� w � ���M�html�� ��� �� and z � ���Z�html�� ��� ��� There are �� possible
descriptors� From the predicate on the url of X� we see that X can only be assigned to x or w� Y
can only be assigned to z because of the type B predicate on the occurence number� This leaves
the variable bindings � x� z �� � w� z �� The �rst one violates the template� because the two
variables must be in adjacent positions� Hence� there is only one possible binding of variables�
� w� z �� �

One might object that most predicates given by the expert are of statistical nature� i�e� of type
C� However� we can still use C predicates to generate type A constraints� if the support of a node
should be at least ���� a page visited less than ��� times in total can be safely ignored� By keeping
this property� called accesses� along with each web page� we can e�ciently skip uninteresting pages�

�

Input� Template � �� v�� �� v�� � � � � vk� � � and predicates of type A� B� C
Output� A set of navigation patterns�

�� Generate the set of All Descriptors by traversing the Aggregated Log�

�a� For each order�preserving sequence of nodes � n�� �� � � � � �� nk � in a branch produce the
descriptor d �� �� d�� �� � � � � �� dk� � �� where di � �ni�page� ni�occurence��

�b� if d is already in All Descriptors� then skip it�

�c� else if for all i � �� � � � � k�

i� The web page referred to in ni satis�es the type A predicates for variable vi�

ii� The position of ni in the sequence is allowed by the template�

iii� The occurence number in ni is permitted for vi�

then add d to All Descriptors�

	� Construct the navigation pattern for each descriptor d in All Descriptors�

�a� Compare d with the �sub�descriptors already in the set Tested Descriptors and test if it can be
rejected without building the navigation pattern�

�b� If d is not rejected� construct the navigation pattern for it�

i� Find all branches of the Aggregated Log that conform to d�

ii� Merge at each element of d�

iii� Compute the supports of the nodes produced by merging�

iv� Test the C predicates against the navigation pattern�

v� If d is rejected

� then store the smallest pre�x that caused the rejection in the set Tested Descriptors�
marking it as R�ejected��

� else store d in Tested Descriptors� marking it as S�uccessful��

�c� If d is not rejected� then output its navigation pattern�

Figure �� The mining algorithm of WUM

Example � cntd� We can see the impact of this optimization in the processing of query Q�
on the Aggregated Log of Fig� �� Since the support of B should be at least ��� we can add the
constraint B�accesses �	 � in the original query�

Now� assuming that a� b both refer to middleware� we can reject �a� �� without further testing�
because the value of its accesses is �� only� Hence� the descriptors generated in the �rst step have
the form � �b� ��� �� X �� where X is one of �e� ��� �f� ��� �d� ��� �b� ��� �c� ��� �

�� Constructing the navigation pattern of each descriptor In the next step of our al�
gorithm� we build the navigation pattern of each descriptor� Actually� this step can be combined
with the previous one to test the descriptors as they are built� We make the separation to simplify
the analysis�

The �rst and last actions of this phase are optimizations� In particular� we keep all descriptors
produced thus far in a set Tested Descriptors� marking them as Successful or Rejected�

�� Already computed support values�

Once a descriptor is computed� we know the support values of all its elements� If a new
descriptor has the same values for the �rst i variables with an already computed one� then
we already know their support values�

�� Additional type A predicates�

By knowing the support values of the �rst i descriptor elements� we can assess constraints
on the minimum total number of accesses for the values of the subsequent elements�

�

�� Rejected subdescriptors�

Assume a descriptor is rejected because its ith element failed in a comparison with the
statistics of the jth element �for i � j�� Then we say that the ith element caused the
rejection�

No descriptor with the same �rst i elements can satisfy the query� By keeping �only� the
subdescriptor with those i elements and comparing it to each new descriptor� we can prune
out unsuccessful descriptors without building their navigation patterns�

Example � contd� After building all descriptors for query Q�� we build the navigation pat�
tern for the �rst one� say � �b� ��� �� �f� �� �� This descriptor is added to the Tested Bindings as
R�ejected�� The rejection was caused by the second element� the support of which was too low�

The next descriptor has the form � �b� ��� �� X � for some other value of X� From the contents
of Tested Bindings� we assess that�

�� B�support 	 �

�� If X is equal to �f� ��� the descriptor should be rejected�

�� The value of X�accesses should be no lower than B�support �
��� i�e� ���

The last observation allows us to reject all bindings of X but �e� �� without building their navigation
patterns�

The careful reader may observe that by a template of the form B�X� the values of B�support
and B�accesses are always equal� Hence� we could prune out all candidates but �e� �� at step ��
This is indeed so for the �rst variable of any template and only for it� We have ignored this fact on
purpose though� in order to explain the optimization steps possible at step �� without introducing
a more complex template� �

Test the C predicates �Step ��	b
iv�� Type C predicates are evaluated after constructing
the navigation pattern� This has the disadvantage of producing many navigation patterns� whose
statistics do not satisfy the query predicates� However� the optimization steps described above
show how we can exploit those predicates� if part of a navigation pattern does not satisfy a type
C predicate� then all other navigation patterns having this same part will also fail and can be
pruned without testing�

THE CURRENT WUM PROTOTYPE

The current version of WUM prototype is implemented in JavaTM � A graphical user interface is
available for entering queries in MINT and for presenting the results�

At the left side of Fig� �� we show a MINT query executed against a web log of one week�
kindly provided by a german company for testing� The query �nds patterns leading to �and going
beyond� the page with the contact persons of the company� Only patterns starting at a node with
support at least �� are of interest� One URL is explicitly excluded�

The query produces two navigation patterns� of which we show one at the right side of Fig� ��
The upper window shows one part of the pattern� namely X�Y� while the lower window shows the
second part Y�� Our visualization module currently displays patterns as trees� this is why X�Y is a
tree� all leaf nodes of which refer to the same page� This page is the value bound to the variable Y�

select T

from node as X Y� template X�Y� as T

where X�url �	 ��balk�html�

and X�support � �

and Y�url 	 ��kontakt�html�

�

Figure �� Presentation of navigation patterns

The displayed navigation pattern shows one of the �two� patterns� In this pattern� people
reaching the contacts�page go through the page on the o�ered seminars� Although there is a link
from this page to the contacts�page� most people choose di�erent links� but eventually reach the
contacts�page� The second pattern indicates that ��� of the visitors stop at this page� while the
others continue navigation� Interpretation of those trends requires knowledge of the contents of
all pages appearing in the patterns�

This example reveals why it is important to display the whole navigation pattern� instead of
the frequent nodes in it only� The �rst pattern leads from the seminars�page to the contacts�page�
Since this pattern is frequent and since there is a link from the former page to the latter� the web
page designer would erroneously assume that the traversal is made by means of the link� Thus� a
design pitfall �e�g� a misleadingly labelled link� would remain undiscovered�

The suspicious designer would discover the pitfall by issuing the above query and a similar
one� with the template set to X����Y � instead� This would imply that at least one web page is
accessed between X and Y� The less suspicious designer might skip this test� though� The goal of
WUM is to help the application expert in discovering knowledge with the least e�ort�

RELATED WORK

Mining on the navigational behaviour of web users has gained signi�cant importance in the last
years� as the value of the web for commerce and for information dissemination has been recognized�

The web miner proposed in �Chen et al�� ���� focusses only on statistically dominant paths
using a methodology for the discovery association rules�

The �web log miner� of �Za	
ane et al�� ���� uses OLAP technology for prediction� classi�cation
and time�series analysis of web log data� Interesting results are obtained on web tra�c analysis
and on the evolution of user behaviour �e�g� preferred pages� over time� The orthogonal issue of
assessing the users� behaviour and organizing the web site in conformance with it� is left open�

The �PageGather� tool of �Perkowitz and Etzioni� ���� uses a clustering methodology to dis�
cover web pages visited together and to place them in the same group� This work concentrates on

�

the discovery of pages that are of potential interest to the same group of users� The issue of how
those pages were reached is not being considered�

The �Footprints� tool of �Wexelblat� ���� records the footprints left behind by web site visitors
and accumulates them into frequently accessed paths� The new visitor of the web site can pro�t
from the recorded behaviour of previous users�

The �WEBMINER� of �Cooley et al�� ����a provides a query language� with which the user
can initiate searches for paths conforming to more sophisticated criteria than high frequency of
access� However� the miners invoked to process such queries have not been designed to cope with
such criteria� According to �Cooley et al�� ����a� the miner for association rules and the miner
for sequential access patterns incorporated to the WEBMINER are conventional tools� of which
the former is slightly customized to improve its performance� The disadvantage of this approach is
the necessity of a postprocessing module� which computes the information required to verify the
criteria of the language not supported by the miner itself�

In particular� conventional sequence miners are designed and optimized for the discovery of fre�
quent sequences� i�e� sequences appearing more often than a threshold �Agrawal and Srikant� �����
�Mannila and Toivonen� ����� �Srikant and Agrawal� ����� �Zaki� ����� There is no trivial way
of instructing such a miner to �nd rare paths of high con�dence� In �Zaki et al�� ����� the ap�
proach proposed to cope with this problem was the gradual removal of frequent but uninteresting
sequences in a loop of mining and post�mining sessions� WUM provides instead an elegant query
language for specifying the frequence�rarity thresholds to be satis�ed by the mining results�

All miners described above process the raw data in the web log �le� Recently� a data ag�
gregation method has been proposed in �Amir et al�� ���� and exploited for the discovery of
association rules� They observe the transactions recorded in the original dataset as sequences of
items according to a some arbitrary order� They aggregate them into a trie structure� so that
sequences with common pre�xes are merged together� Then� a rule A � B holds i� events A�B
appear in the same branch of the tree� Since association rules have no ordering� they will appear
in exactly one aggregated sequence� The e�ciency of this approach has been demonstrated e�g� in
�Feldman et al�� �����

We have independently come to the idea of aggregating web paths� since paths are already
sequences� this is intuitive� Dissimilarly to association rules� though� paths have an order� So� two
events A�B may appear in several aggregated sequences at any positions� This makes mining over
aggregated sequences more complicated than the discovery of association rules� as could be seen
from the description of the WUM algorithm�

CONCLUSIONS

We have presented a miningmechanism for the analysis of the navigational behaviour of web users�
Our miner is part of the WUM tool for the speci�cation� discovery and visualization of interesting
patterns� Its �rst aim is exibility towards application�dependent and even pattern�dependent
interestingness criteria�

To cope with very generic and with complicated speci�cations of the desired patterns� WUM

uses an e�cient discovery mechanism� By mining on aggregated instead of raw data we ensure a
performance improvement� since the size of the dataset to be processed is reduced considerably�
In our description of the mining mechanism� we have shown that further performance gains are
achieved by generating constraints from the interestingness criteria speci�ed by the expert�

We are currently working on formalizing the optimizationmechanism and on the establishment
of index structures to further increase e�ciency� To determine the accuracy of predictions on
navigational behaviour� we perform experiments on web logs of our site� A concrete goal is to
improve the design of the lecture notes� pages we provide�

WUM has been originally designed for the discovery of navigation patterns in web sites� How�
ever� its miner is appropriate to discover patterns over sequences of any type� Hence� we are
particularly interested in testing WUM for arbitrary event patterns from other application areas�

��

References

�Agrawal and Srikant� ���� Agrawal� R� and Srikant� R� ������� Mining sequential patterns� In
ICDE� Taipei� Taiwan�

�Amir et al�� ���� Amir� A�� Feldman� R�� and Kashi� R� ������� A new and versatile method for
association generation� Information Systems� ������!����

�Chen et al�� ���� Chen� M��S�� Park� J� S�� and Yu� P� S� ������� Data mining for path traversal
patterns in a web environment� In ICDCS� pages ���!����

�Cooley et al�� ����a Cooley� R�� Mobasher� B�� and Srivastava� J� �����a�� Grouping web page
references into transactions for mining world wide web browsing patterns� Technical Report TR
������� Dept� of Computer Science� Univ� of Minnesota� Minneapolis� USA�

�Cooley et al�� ����b Cooley� R�� Mobasher� B�� and Srivastava� J� �����b�� Web mining� Infor�
mation and pattern discovery on the world wide web� In ICTAI	
��

�Feldman et al�� ���� Feldman� R�� Kl	osgen� W�� and Zilberstein� A� ������� Visualization tech�
niques to explore data mining results for document collections� In KDD	
�� pages ��!��� New�
port Beach� CA� AAAI Press�

�Mannila and Toivonen� ���� Mannila� H� and Toivonen� H� ������� Discovering generalized
episodes using minimal occurences� In KDD	
�� pages ���!����

�Perkowitz and Etzioni� ���� Perkowitz� M� and Etzioni� O� ������� Adaptive web pages� Auto�
matically synthesizing web pages� In submitted to AAAI	
�

�Piateski�Shapiro and Matheus� ���� Piateski�Shapiro� G� and Matheus� C� J� ������� The in�
terestingness of deviations� In AAAI	
� Workshop Knowledge Discocery in Databases� pages
��!��� AAAI Press�

�Spiliopoulou� ���� Spiliopoulou� M� ������� The laborious way from data mining to web mining�
Int� Journal of Comp� Sys�� Sci� � Eng�� Special Issue on �Semantics of the Web�� to appear�

�Spiliopoulou and Faulstich� ���� Spiliopoulou� M� and Faulstich� L� C� ������� WUM� A Tool
for Web Utilization Analysis� In EDBT Workshop WebDB	
� Valencia� Spain� Springer Verlag�
extended version to appear in LNCS �����

�Srikant and Agrawal� ���� Srikant� R� and Agrawal� R� ������� Mining sequential patterns� Gen�
eralizations and performance improvements� In EDBT� Avignon� France�

�Tauscher and Greenberg� ���� Tauscher� L� and Greenberg� S� ������� Revisitation patterns in
world wide web navigation� In CHI	
�� Atlanta� Georgia�

�Wexelblat� ���� Wexelblat� A� ������� An environment for aiding information�browsing tasks�
In Proc� of AAAI Spring Symposium on Acquisition� Learning and Demonstration� Automating

Tasks for Users� Birmingham� UK� AAAI Press�

�Za	
ane et al�� ���� Za	
ane� O�� Xin� M�� and Han� J� ������� Discovering web access patterns
and trends by applying OLAP and data mining technology on web logs� In Advances in Digital

Libraries� pages ��!��� Santa Barbara� CA�

�Zaki� ���� Zaki� M� J� ������� Fast mining of sequential patterns in very large databases� Tech�
nical Report ���� University of Rochester�

�Zaki et al�� ���� Zaki� M� J�� Lesh� N�� and Ogihara� M� ������� PLANMINE� Sequence mining
for plan failures� In Agrawal� R�� Stolorz� P�� and Piatesky�Shapiro� G�� editors� Proc� of �th Int�

Conf� KDD� pages ���!���� New York� NY�

��

