
HHL Working Paper No. 58

Getting Started with
DIAsDEM Workbench 2.0:
A Case-Based Tutorial

Karsten Winkler

HHL – Leipzig Graduate School of Management
Department of E-Business

Jahnallee 59, D-04109 Leipzig, Germany
E-Mail: kwinkler@ebusiness.hhl.de

Copyright: 2003
All rights reserved.

Contents

1 Introduction 4
1.1 The DIAsDEM Framework . 4
1.2 Code Credits and Trademarks . 7
1.3 License of DIAsDEM Workbench 2.0 . 8
1.4 Typographical Conventions . 9

2 Installation 10
2.1 Prerequisites . 10
2.2 Unix/Linux . 10
2.3 Windows . 11

3 Case Study 12
3.1 Application Domain and Data Set . 12
3.2 Text Pre-Processing . 13

3.2.1 Importing Text Files . 14
3.2.2 Creating a New Collection File . 16
3.2.3 Creating Text Units . 18
3.2.4 Tokenizing Text Units . 20
3.2.5 Replacing Named Entities . 23
3.2.6 Removing Stopwords . 29
3.2.7 Creating Lemma Forms . 31

3.3 Iterative Clustering . 35
3.3.1 Creating Word Statistics . 35
3.3.2 Viewing Word Statistics . 38
3.3.3 Editing Domain-Specific Thesauri 40
3.3.4 Creating Text Unit Vectors in Iteration 1 42
3.3.5 Clustering Text Unit Vectors in Iteration 1 46
3.3.6 Monitoring Cluster Quality in Iteration 1 51
3.3.7 Editing Cluster Label Files in Iteration 1 56
3.3.8 Tagging Text Units in Iteration 1 58
3.3.9 Summary of Clustering Iteration 2 61

3.4 XML Tagging of Texts . 65

Contents

3.4.1 Tagging Documents . 65
3.4.2 Evaluating the Tagging Quality . 70

3.5 Auxiliary Tasks . 73
3.5.1 Create Initial Thesaurus . 73

4 Technical Specification 75
4.1 DIAsDEM Documents . 75
4.2 Text Pre-Processing . 76

4.2.1 Module: Create Text Units . 76
4.2.2 Module: Tokenize Text Units . 77
4.2.3 Module: Replace Named Entities 78
4.2.4 Module: Remove Stopwords . 83
4.2.5 Module: Create Lemma Forms . 83

4.3 Iterative Clustering . 85
4.3.1 Module: Create Text Unit Vectors 85
4.3.2 Module: Cluster Text Unit Vectors 88
4.3.3 Module: Monitor Cluster Quality 89
4.3.4 Module: Tag Text Units . 90

4.4 XML Tagging of Texts . 90
4.4.1 Module: Tag Documents . 90

List of Abbreviations 92

List of Relevant German Vocabulary 93

Bibliography 95

3

1 Introduction

Most organizations are not only “drowning” in data, they are also “struggling” to cope
with huge amounts of text documents. Currently, up to 80% of a company’s information
is stored in unstructured textual documents [Sul01, p. 56]. Hence, capturing interesting
and actionable knowledge from textual databases is a major challenge. Creating semantic
markup is one form of providing explicit knowledge about text archives to facilitate
searching and browsing or to enable information integration with related data sources.
Unfortunately, most users are not willing to manually create meta-data due to the efforts
and costs involved. Thus, text mining techniques are required that (semi-) automatically
create semantic markup.

The semantic annotation of text archives using the Extensible Markup Language
XML results in application-specific, semantic meta-data in the form of XML tags and
an archive-specific XML document type definition (DTD). Semantic meta-data can be
utilized to facilitate for example knowledge management and information integration.
Appropriate XML query languages could be employed to submit both content- and
structure-based queries against XML archives. However, two main problems must be
solved to semi-automatically create text annotations: Firstly, an appropriately struc-
tured, semantic DTD should be derived for each textual archive. Secondly, all text
documents contained in an archive should be semantically tagged according to the pre-
viously derived document type definition.

In the next section, the DIAsDEM1 framework for semantic tagging of large, domain-
specific text archives is concisely introduced. The reader might refer to [GWS01, GSW01,
WS01c, WS01a, GWS01] for a complete description of the DIAsDEM framework as
well as a thorough discussion of related work. Figure 1.1 illustrates the user interface
of DIAsDEM Workbench 2.0. This Java-based research prototype supports the entire
framework. However, the current release does not support automated batch processing.

1.1 The DIAsDEM Framework

In DIAsDEM, the notion of semantic tagging refers to annotating texts with domain-
specific XML tags that might contain additional attributes describing extracted named

1The acronym DIAsDEM is the name of a research project funded by Deutsche Forschungsgemeinschaft
(German Research Society, http://www.dfg.de), DFG grants: SP 572/4-1 and SP 572/4-3.

1 Introduction – 1.1 The DIAsDEM Framework

Figure 1.1: Java-based GUI of DIAsDEM Workbench 2.0

entities (e.g., names of persons). Rather than classifying entire documents or tagging
single terms, we aim at semantically annotating structural text units such as sentences or
paragraphs in order to make their semantics explicit. The following example illustrates
two tagged sentences contained in a German Commercial Register entry, whereas each
sentence is a text unit:

<BusinessPurpose>Der Betrieb von Spielhallen in Teltow und das Aufstellen von Geldspiel-

und Unterhaltungsautomaten. </BusinessPurpose>

<AppointmentManagingDirector Person="Balski; Pawel"> Pawel Balski ist zum Geschäfts-

führer bestellt. </AppointmentManagingDirector>

Semantic tagging in DIAsDEM is a two-phase process. We have designed a knowledge
discovery in textual databases (KDT) process that constitutes the first phase in order to
build clusters of semantically similar text units, to tag documents in XML according to
the results and to derive an XML DTD describing the archive. The KDT process that is
depicted in Figure 1.2 results in a final set of clusters whose labels serve as XML tags and
DTD elements. Huge amounts of new documents can be converted into XML documents
in the second, batch-oriented and productive phase of the DIAsDEM framework.

Besides the initial text documents to be tagged, the following domain knowledge con-
stitutes input to the KDT process: A thesaurus [ISO86] containing a domain-specific
taxonomy of terms and concepts, a preliminary UML schema of the domain and descrip-
tions of specific named entities, e.g. persons and companies. The UML schema reflects
the semantics of named entities and the relationships among them, as they are initially
conceived by application experts. This schema serves as a reference for the DTD to be

5

1 Introduction – 1.1 The DIAsDEM Framework

==========
==========
==========
 =========
==========
==========
 =========
==========

=======

=======

========

==========
==========
==========
 =========
==========
==========
 =========
==========

=======

=======

========

==========
==========
==========
 =========
==========
==========
 =========
==========

=======

=======

========

Text Documents

====
====

====
====

====
====

====
====

====
====

====
====

====
====

====
====

Thesaurus

 ===

 ===
 ===
 ===
 ===

 ===
 ===
 ===
 ===
 ===
 ===

 === === ===

 =====

====

===

UML Schema

\==\==\==
\==\==\====
\==\=====\==

\===\==
\====\==

Date =

Place =

Corporation =

Currency =

Person = ==========
 ==========
 ==========

 =====
 =====
 =====

 ====, ====,
 ===, ===, ===,
 ======, ====

Entity Descriptions

Input:

====
====

 ====
 ====

==
==

====
====

=====
=====

===
===

==
==

=====

======
======

====
====

 ====
 ====

 _ _

 _

Unacceptable Clusters

+

 ++ ====
====

 ====
 ====

==
==

====
====

=====
=====

===
===

==
==

=====

======
======

====
====

 ====
 ====

Acceptable Clusters

Execution of Algorithm

Cluster Inspection
Evaluation of Cluster Quality

Setting of ParametersClustering:

It
er

at
io

n

Persons:

Dates:

==== ============
==== =============
==== ========
==== =============
==== ===========
==== ============

==== ==.======.===
==== ==.==.===
==== ==.=======.===
==== ==.==.===

==== =============

==== =============

Named Entities

==========

==========
==========

==========

<−>====<\>
<−>=======

=====<\>
 <−>======

=======<\>
 <−>======
=======<\>

==========

==========
==========

==========

<−>====<\>
<−>=======

=====<\>
 <−>======

=======<\>
 <−>======
=======<\>

==========

==========
==========

==========

<−>====<\>
<−>=======

=====<\>
 <−>======

=======<\>
 <−>======
=======<\>

XML Documents

<========>

<=======>
<=======>
<====>
<======>
<======>
<========>

<=====>

<=======>

Type Definition
XML Document

====
====

 ====
 ====

==
==

====
====

=====
=====

===
===

==
==

=====

======
======

====
====

 ====
 ====

Text Unit Clusterer

21

3

Output:

Postprocessing:

Extraction and Replacement of Named Entities

Creation of DTD and XML Documents

NLP Preprocessing and Creation of Text Units

Cleansing and Refinement of Clusters

Selection of Features (Text Unit Descriptors)
Mapping of Text Units into Feature Vectors

Semantic Labeling of Acceptable Clusters
XML Tagging of Text Units

Preprocessing:

Figure 1.2: Iterative and interactive KDT process of the DIAsDEM framework

derived from discovered semantic tags. However, there is no guarantee that the final
DTD will be contained in or will contain this schema.

Similarly to a conventional KDD process, the process starts with a pre-processing
phase that includes basic NLP pre-processing tasks such as tokenization, normalization
and word stemming as well as named entity extraction. Instead of removing stop words,
we establish a drastically reduced feature space by selecting a limited set of terms and
concepts (so-called text unit descriptors) from the thesaurus and the UML schema. Text
unit descriptors are currently chosen by the knowledge engineer, because they must
reflect important concepts of the application domain. All text units are mapped onto
Boolean vectors of this feature space. Thereafter, Boolean text unit vectors are further
processed by applying an information retrieval weighting schema (i.e., TFxIDF).

In the pattern discovery phase, all text unit vectors contained in the initial archive
are clustered based on content similarity. The objective is to discover dense and homo-
geneous text unit clusters. Clustering is performed in multiple iterations. Each iteration
outputs a set of clusters, which is partitioned into qualitatively “acceptable” and “un-
acceptable” ones according to our quality criteria. A cluster of text unit vectors is
”acceptable”, if and only if (i) its cardinality is large and the corresponding text units
are (ii) homogeneous and (iii) can be semantically described by a small number of text
unit descriptors. Members of “acceptable” cluster are subsequently removed from the
data set for later labeling, whereas the remaining text unit vectors are input to the clus-

6

1 Introduction – 1.2 Code Credits and Trademarks

tering algorithm in the next iteration. In each iteration, the cluster similarity threshold
value is stepwisely decreased such that “acceptable” clusters become progressively less
specific in content. The KDT process is based on a plug-in and a plug-out concept that
allows the execution of various clustering algorithms within DIAsDEM Workbench.

In the post-mining phase, qualitatively “acceptable” clusters are semi-automatically
assigned a semantic label. DIAsDEM Workbench suggests default cluster labels for
“acceptable” clusters that are derived from prevailing feature space dimensions (i.e.,
text unit descriptors) in each “acceptable” cluster. Cluster labels actually correspond
to XML tags that are subsequently used to annotate cluster members. Thereafter,
original documents are annotated by valid XML tags that include attributes reflecting
previously extracted named entities and their values. Finally, an unstructured XML
DTD is derived that coarsely describes the semantic structure of the XML collection by
enumerating discovered XML tags. The following DTD excerpt was created in a recent
case study [WS01c]:

<!ELEMENT CommercialRegisterEntry (#PCDATA | BusinessPurpose | ShareCapital |
SupervisoryBoard | AppointmentManagingDirector | (...) | Owner |
FoundationPartnership)* > <!ELEMENT BusinessPurpose (#PCDATA)> (...)

<!ELEMENT FoundationPartnership (#PCDATA)>

1.2 Code Credits and Trademarks

Code Contributors: Markus Banach (diasdem.kernel.preprocessor.*), Henner Graub-
itz (diasdem.misc.io.*, diasdem.neex.*) and Karsten Winkler (diasdem.client.*, dias-
dem.kernel.*, diasdem.messages.*, diasdem.misc.*, diasdem.neex.*, diasdem.objects.*,
diasdem.server.*, kwinkler.*)

The research project DIAsDEM is funded by Deutsche Forschungsgemeinschaft (Ger-
man Research Foundation), DFG grants SP 572/4-1 and SP 572/4-3. Information about
Deutsche Forschungsgemeinschaft is available at http://www.dfg.de.

The DIAsDEM Workbench utilizes software developed by the JDOM Project (http://
www.jdom.org/). Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All
rights reserved. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions,
and the disclaimer that follows these conditions in the documentation and/or other materials
provided with the distribution.

7

1 Introduction – 1.3 License of DIAsDEM Workbench 2.0

3. The name ”JDOM” must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact license@jdom.org.

4. Products derived from this software may not be called ”JDOM”, nor may ”JDOM” appear in their
name, without prior written permission from the JDOM Project Management (pm@jdom.org).

THIS SOFTWARE IS PROVIDED ”AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the JDOM

Project and was originally created by Brett McLaughlin <brett@jdom.org> and Jason Hunter <jhunter@

jdom.org>. For more information on the JDOM Project, please see <http://www.jdom.org/>.

The DIAsDEM Workbench utilizes WEKA 3.3.3, 28 June 2002, Java Programs for
Machine Learning. Copyright (C) 1998, 1999, 2000, 2001, 2002 Eibe Frank, Leonard
Trigg, Mark Hall, Richard Kirkby. WEKA is distributed under the GNU public license
available at http://www.opensource.org/licenses/gpl-license.php.

The DIAsDEM Workbench utilizes GNU Regular Expressions for Java 1.0.8 (http://
www.cacas.org/java/gnu/regexp/). GNU Regular Expressions for Java 1.0.8 is distrib-
uted under the GNU Lesser General Public License available at http://www.opensource.
org/licenses/lgpl-license.php.

Sun, Sun Microsystems, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK,
Java, the Java Coffee Cup logo, and Visual Java are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the United States and other countries. All other
tradenames, trademarks, and registered trademarks are the property of their respective
owners.

1.3 License of DIAsDEM Workbench 2.0

Copyright (c) 2000-2003, Henner Graubitz, Myra Spiliopoulou, Karsten Winkler. All
rights reserved. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

8

1 Introduction – 1.4 Typographical Conventions

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

• Neither the name of the research project DIAsDEM funded by Deutsche Forschungs-
gemeinschaft (German Research Foundation, DFG grants SP 572/4-1 and SP
572/4-3) nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIB-

UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-

STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-

RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-

TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING

IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-

ITY OF SUCH DAMAGE.

1.4 Typographical Conventions

Italic is used for emphasis within text and to indicate selectable items in DIAsDEM
Workbench windows and menus. Italic is also used to represent field names (i.e., pa-
rameters) in DIAsDEM Workbench dialogs and windows. Courier is used to refer to
directories, file names and file extentions. Additionally, Courier is used for computer
output, XML tags and contents of files (e.g., XML and text files). In the remainder of
this case study, the following abbreviations indicate directories on your file system as
listed below. Note, these four abbreviations do not correspond to environment variables.

• ${DIAsDEM HOME} denotes the local directory of DIAsDEM Workbench, e.g. /home/
kwinkler/diasdem/DIAsDEM.workbench2.

• ${PARAMETER HOME} denotes the local subdirectory of ${DIAsDEM HOME} that con-
tains default parameter files, i.e., ${DIAsDEM HOME}/data/parameters.

• ${SAMPLES HOME} denotes the local subdirectory of ${DIAsDEM HOME} that contains
sample text files, i.e., ${DIAsDEM HOME}/data/samples.

• ${PROJECT HOME} denotes the local directory that contains all files related to a
single project, e.g., /home/kwinkler/diasdem/DIAsDEM.cases/tutorial.

9

2 Installation

2.1 Prerequisites

The target machine must be equipped with at least 256 MB memory. Either the
Java 2 Runtime Environment 1.4.0 or the Java 2 Software Development Kit, Stan-
dard Edition, 1.4.0 must have been installed on the target machine. Visit the Web site
http://java.sun.com to download the required Java release.

2.2 Unix/Linux

1. Visit the Web site http://www.hypknowsys.org/diasdem and download the com-
pressed archive file DIAsDEM.workbench2.tar.gz.

2. Create a directory for DIAsDEM Workbench (e.g., /home/kwinkler/diasdem)
and copy the file DIAsDEM.workbench2.tar.gz into this directory. Additionally,
ensure that you have write permission in this new directory.

3. Make the DIAsDEM-specific directory (e.g., /home/kwinkler/diasdem) your cur-
rent working directory and unzip the compressed file by submitting the following
two commands at the prompt:

/home/kwinkler/diasdem> gunzip DIAsDEM.workbench2.tar.gz
/home/kwinkler/diasdem> tar -xf DIAsDEM.workbench2.tar

4. Using any common text editor, modify the environment variables JAVA HOME and
DIAsDEM HOME in the shell script DIAsDEM.workbench2/bin/diasdemgui (e.g., be-
low the directory /home/kwinkler/diasdem) according to your system. For ex-
ample, if Java has been installed in the directory /usr/lib/j2sdk1.4.0 01 and
if the file DIAsDEM.workbench2.tar.gz has been uncompressed in the directory
/home/kwinkler/diasdem, these environment variables have to be set as follows:

DIAsDEM HOME=/home/kwinkler/diasdem/DIAsDEM.workbench2
JAVA HOME=/usr/lib/j2sdk1.4.0 01

2 Installation – 2.3 Windows

5. Make sure that the shell script DIAsDEM.workbench2/bin/diasdemgui (e.g., be-
low the directory /home/kwinkler/diasdem) is an executable file:

/home/kwinkler/diasdem> chmod a+x DIAsDEM.workbench2/bin/diasdemgui

6. Thereafter, DIAsDEM Workbench can be launched by executing the shell script
DIAsDEM.workbench2/bin/diasdemgui (e.g., below /home/kwinkler/diasdem).

/home/kwinkler/diasdem> DIAsDEM.workbench2/bin/diasdemgui

2.3 Windows

1. Visit the Web site http://www.hypknowsys.org/diasdem and download the com-
pressed archive file DIAsDEM.workbench2.zip. Note, this zipped archive includes
exactly the same contents as DIAsDEM.workbench2.tar.gz.

2. Create a directory for DIAsDEM Workbench (e.g., C:\Programs\diasdem) and
copy the file DIAsDEM.workbench2.zip into this directory.

3. Using for example WinZip that is available at http://www.winzip.com, extract the
compressed file into the DIAsDEM-specific directory (e.g., C:\Programs\diasdem).

4. Using any common text editor, modify the environment variables JAVA HOME and
DIAsDEM HOME in the batch file DIAsDEM.workbench2\bin\diasdemgui.bat (e.g.,
below the directory C:\Programs\diasdem) according to your system. For ex-
ample, if Java has been installed in C:\Programs\Java\j2re1.4.0 01 and if the
file DIAsDEM.workbench2.zip has been extracted in C:\Programs\diasdem, these
environment variables have to be set as follows:

DIAsDEM HOME=C:\Programs\diasdem\DIAsDEM.workbench2
JAVA HOME=C:\Programs\Java\j2re1.4.0 01

5. Thereafter, DIAsDEM Workbench can be launched by opening Windows Explorer
and double-clicking the batch file DIAsDEM.workbench2\bin\diasdemgui.bat (e.g.,
below the directory C:\Programs\diasdem).

6. Using Windows95 or Windows98 with standard system configurations, double-
clicking diasdemgui.bat is likely to produce an “environment out of memory”
error. In this case, the MS-DOS environment must be allocated more memory:
Open Windows Explorer, right-click the icon of diasdemgui.bat, select Properties,
click on the Memory tab and adjust Initial Environment from Auto to 2048. After
clicking on OK to commit the change, a PIF-file (i.e., diasdemgui.pif) is created
that should afterwards be double-clicked to start DIAsDEM Workbench.

11

3 Case Study

3.1 Application Domain and Data Set

In Germany, each district court maintains a Commercial Register that contains impor-
tant information about the companies in the court’s district. According to law, many
company activities like the establishment of branch offices, changes of share capital or
mergers and acquisitions must be reported to the respective Register. Knowledge of these
entries is indispensable for business activities, as they have both a right-confirmation and
a right-generating effect according to the German Commercial Code.

Registered name
Foundation date
Liquidation date
Business purpose

District court
Commercial Register section
Record number

Publication date
Registration date
Entry type
Registered text

Registered place
Business address

1..*

0..*1

Main office

1
Company

Commercial Register record

Commercial Register entry

Office

Branch office

Registered name affix

1
1

1

1

Figure 3.1: Simplified application domain (UML class diagram)

Commercial Register entries are made available to the public, since up-to-date knowl-
edge about a company’s affairs is essential to its (prospective) stakeholders. Three main
categories of Commercial Register entries can be distinguished: foundation entries of new
companies, update entries (e.g., changes in the managerial head of a company) and en-
tries announcing that a company closes. The conceptual model the application domain
is partly depicted as UML class diagrams in Figure 3.1 and Figure 3.2, respectively.

The directory ${SAMPLES HOME}/de/commercialRegister1 contains 1146 German
Commercial Register entries published by the district court Postsdam in 1999 via its Web
site (http://www.amtsgericht-potsdam.org). Each entry announces the foundation of a
new company in the Potsdam district. Table 3.1 illustrates the Commercial Register en-
try contained in the file ${SAMPLES HOME}/de/commercialRegister1/file10780.txt.
All text files are ISO-8856-1 encoded and have Unix-like line feeds. However, each entry

3 Case Study – 3.2 Text Pre-Processing

Registered name
Foundation date
Liquidation date
Business purpose

Main office
Unlimited liable partners[..]: Entity

Title

Surname
Forename

Place of residence
Date of birth

Share capital: Amount of money
Managing directors[..]: Natural person

Partnership limited
by shares (KGaA)

General partner-
ship (OHG)

Captial stock: Amount of money
Managing board[..]: Natural person

Legal entity

Main office

Company

Entity

Partnership

Natural Person

Limited partnership (KG)

Number of limited partners

Sole proprietorship

Owner: Natural person

Joint stock company (AG)

Limited liability company (GmbH)

Figure 3.2: Simplified taxonomy of German companies (UML class diagram)

is stored in a single line in order to avoid line feed related problems. Note, a concise list
of relevant German vocabulary based on [PDV00] is available on page 93.

Der Handel mit Waren aller Art sowie Import und Export. Der Dienstleistungsbereich bezieht
sich auf Vermittlung, Beratung und Schulungen. Stammkapital: 50.000 DM. Gesellschaft mit
beschränkter Haftung. Der Gesellschaftsvertrag ist am 18. April 1994 abgeschlossen und am 04.
Dezember 1997 / 27. Mai 1998 abgeändert in §1 (Firma), §2 (Gegenstand) und §4 (Geschäftsführer).
Durch Beschluss der Gesellschafterversammlung vom 17. November 1998 ist der Sitz der Gesellschaft
von Maintal nach Damsdorf verlegt und der Gesellschaftsvertrag geändert in §1 (Firma und Sitz). Ist
nur ein Geschäftsführer bestellt, so vertritt er die Gesellschaft allein. Sind mehrere Geschäftsführer
bestellt, so wird die Gesellschaft durch zwei Geschäftsführer oder durch einen Geschäftsführer in
Gemeinschaft mit einem Prokuristen vertreten. Einzelvertretungsbefugnis kann erteilt werden.
Marion Marcella Adolph geb. Priester, 22.03.1957, Offenbach, ist zur Geschäftsführerin bestellt.
Sie ist befugt, Rechtsgeschäfte mit sich selbst oder mit sich als Vertreter Dritter abzuschließen.
Nicht eingetragen: Die Bekanntmachungen der Gesellschaft erfolgen im Bundesanzeiger.

Table 3.1: A German Commercial Register entry

3.2 Text Pre-Processing

In the following screen-shots of this case study, the directory /home/kwinkler/diasdem/
DIAsDEM.workbench2 corresponds to ${DIAsDEM HOME}. Moreover, ${PROJECT HOME}
corresponds to the directory /home/kwinkler/diasdem/DIAsDEM.cases/tutorial. All

13

3 Case Study – 3.2 Text Pre-Processing

file names and directory names are Unix/Linux-based in this case study.
Create a local directory ${PROJECT HOME} on your machine that can be used to store all

case-related files. Additionally, create an extra subdirectory ${PROJECT HOME}/xml for
1146 intermediate XML files used by the DIAsDEM Workbench for internal processing
purposes as well as 1146 final XML files. These final XML files will contain semantically
annotated Commercial Register entries after the completion of this case study.

DIAsDEM.cases/tutorial> pwd

/home/kwinkler/diasdem/DIAsDEM.cases/tutorial

DIAsDEM.cases/tutorial> ls

xml

3.2.1 Importing Text Files

Existing plain text files must be converted into an intermediary, DIAsDEM-specific
format by selecting File → Import Text Files. Please provide the following parameters:

Parameter Value

Text File Directory ${SAMPLES HOME}/de/commercialRegister1
File Name Extension .txt

Collection Directory ${PROJECT HOME}/xml

Figure 3.3: Import Text Files window of DIAsDEM Workbench 2.0

Please make sure to replace the abbreviations ${SAMPLES HOME} and ${PROJECT HOME}
with the corresponding directories according to your individual installation of DIAsDEM
Workbench. Files and directories can always be chosen by clicking on the button “...”
beside the respective text field and afterwards selecting a file from the file dialog.

Click the OK button to start the import process: All text files that are contained
in Text File Directory and whose file names end with File Name Extension will be
imported into the File Collection Directory. Check the contents of the subdirectory
${PROJECT HOME}/xml:

14

3 Case Study – 3.2 Text Pre-Processing

DIAsDEM.cases/tutorial> ls

xml

DIAsDEM.cases/tutorial> ls -l xml | more

-rw-r--r-- 1 kwinkler users 1256 Dez 8 18:09 DiasdemDocument.dtd

-rw-r--r-- 1 kwinkler users 1276 Dez 8 18:09 file10001.txt.xml

-rw-r--r-- 1 kwinkler users 1118 Dez 8 18:09 file10002.txt.xml ...

-rw-r--r-- 1 kwinkler users 1747 Dez 8 18:09 file11160.txt.xml

The file DiasdemDocument.dtd contains the XML document type definition of inter-
mediate DIAsDEM files. For example, ${PROJECT HOME}/xml/file10780.txt.xml is
an XML document that contains the textual German Commercial Register entry listed
in Table 3.1, i.e., ${SAMPLES HOME}/de/commercialRegister1/file10780.txt:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE diasdemDocument SYSTEM "DiasdemDocument.dtd">

<diasdemDocument>

<metaData>

<name>SourceFile</name>

<content>/home/.../samples/de/commercialRegister1/file10780.txt</content>

</metaData>

<text>Der Handel mit Waren aller Art sowie Import und Export. ...</text>

</diasdemDocument>

Import Text Files: Summary

Module: File → Import Text Files

Use Case: The user wants to employ DIAsDEM Workbench to semantically annotate
text documents that are stored in plain text files within a single local
directory. Each text file contains exactly one text document that has to
be semantically annotated.

Prerequisites: None

Result: Files in Text File Directory whose file names end with File Name Exten-
sion are transformed into the intermediate DIAsDEM format (i.e., XML
documents conforming to XML DTD DiasdemDocument.dtd described in
section 4.1 on page 75) and are copied to Collection Directory. Addition-
ally, the DIAsDEMgui preference Default Collection Directory is set.

Remarks: Alternatively, the user might employ third-party pre-processing scripts
(e.g., Perl) to convert text documents into XML documents conforming
to the XML DTD DiasdemDocument.dtd. In this case, additional meta-
data can be included in intermediate XML files as well.

15

3 Case Study – 3.2 Text Pre-Processing

Import Text Files: Parameters

Text File Directory : Existing local directory that contains text files to be imported

File Name Extension: Names of text files to be imported must end with this file name
extension; default value: .txt

Collection Directory : Existing local directory that will contain the imported XML doc-
uments; proposed value: ${PROJECT HOME}/xml

3.2.2 Creating a New Collection File

Intermediate DIAsDEM files that belong to the same application domain are considered
to be a collection of related documents. Only one collection can be processed by DIAs-
DEM Workbench at any time. A collection file contains meta-data about the archive
as well as references to local intermediate XML files constituting the collection. For
certain intermediate DIAsDEM files in a local directory, a collection file can be created
by selecting File → New Collection File. Please input the following parameters:

Parameter Value

Collection Directory ${PROJECT HOME}/xml
File Name Extension .xml

Collection File ${PROJECT HOME}/collection.dcf
Advanced Options Yes, Perform XML Validity Check

Figure 3.4: New Collection File window of DIAsDEM Workbench 2.0

Click on OK to create a new collection file: All intermediate files that are contained
in Collection Directory and whose file names end with File Name Extension will be
added to Collection File. Furthermore, a check is performed for all files in order to
check their well-formedness and validity with respect to their XML DTD. The directory
${PROJECT HOME}/xml should now contain the following files:

16

3 Case Study – 3.2 Text Pre-Processing

DIAsDEM.cases/tutorial> ls

collection.dcf collection.dcf.files xml

DIAsDEM.cases/tutorial> more collection.dcf

#This is an automatically created file: Please do not edit this file manually!

#Sun Dec 08 23:31:30 CET 2002

COLLECTION_DIRECTORY=/home/kwinkler/diasdem/DIAsDEM.cases/tutorial/xml/

COLLECTION_FILE_NAME=/home/kwinkler/diasdem/DIAsDEM.cases/tutorial/collection.dcf.files

NUMBER_OF_DOCUMENTS=1146

DIAsDEM.cases/tutorial> tail -n 3 collection.dcf.files

/home/kwinkler/diasdem/DIAsDEM.cases/tutorial/xml/file10531.txt.xml

/home/kwinkler/diasdem/DIAsDEM.cases/tutorial/xml/file10705.txt.xml

/home/kwinkler/diasdem/DIAsDEM.cases/tutorial/xml/file10889.txt.xml

Subsequently, the file collection.dcf is referred to as Collection File that uniquely
identifies the corresponding archive and contains relevant meta-data. Each Collec-
tion File is accompanied by an auxiliary file whose file extention is .dcf.files, e.g.
collection.dcf.files. This file only contains absolute file names of all intermediate
XML files comprising the collection. Neither of these two files should be modified or
deleted manually.

New Collection File: Summary

Module: File → New Collection File

Use Case: The user wants to employ the DIAsDEM Workbench to semantically an-
notate texts that are stored as XML documents in a single local directory.

Prerequisites: Each XML file must conform to the XML DTD DiasdemDocument.dtd
that is described in section 4.1 on page 75.

Result: A new Collection File is created and all files in Collection Directory whose
file names end with File Name Extension are part of the collection. Ad-
ditionally, the DIAsDEMgui preferences Default Collection File, Default
Collection Directory and Default Project Directory are set.

Remarks: All subsequent processing modules of the DIAsDEM Workbench require
a specific Collection File as an input parameter.

New Collection File: Parameters

Collection Directory : Existing local directory that contains XML documents of the archive
to be tagged; default value: DIAsDEMgui preference Default Collection
Directory

17

3 Case Study – 3.2 Text Pre-Processing

File Name Extension: Names of XML files in the new collection must end with the
specified file name extension; default value: .xml

Collection File: Valid local file name of new collection file; file extension: .dcf; proposed
value: ${PROJECT HOME}/collection.dcf

Advanced Options : If Perform XML Validity Check is enabled, only well-formed and
valid XML documents will be added to Collection File.

3.2.3 Creating Text Units

After importing text files and creating a collection file, the text pre-processing phase
starts with identifying and separating text units. In this case study, each sentence of
Commercial Register entries corresponds to a text unit. Hence, only sentences will be
semantically annotated by DIAsDEM Workbench. Select File → Create Text Units and
type in the following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Text Unit Algorithm Heuristic Sentence Identifier

Abbreviations File ${PARAMETER HOME}/createTextUnits/de/AbbreviationsDE.txt
Full Stop Regex File ${PARAMETER HOME}/createTextUnits/de/FullStopRegexDE.txt
Replaced Full Stops Keep Asterisks for Tokenization

Figure 3.5: Create Text Units window of DIAsDEM Workbench 2.0

Click the OK button to start the process of identifying and separating sentences within
text documents. In the entire text, Heuristic Sentence Identifier first replaces full stops
in abbreviations (e.g., “z.B.”) listed in Abbreviations File with asterisks. Thereafter, all
regular expressions contained in Full Stop Regex File are matched against the text. These

18

3 Case Study – 3.2 Text Pre-Processing

regular expressions match full stops that are no sentence boundaries (e.g., “01.01.2002”)
and replace them with asterisks as well. Both textual parameter files can be edited in
order to include additional domain knowledge.

Have a look at the contents of the file ${PROJECT HOME}/xml/file10780.txt.xml.
This intermediate XML document has been extended by the new section <textUnits>
whose elements <textUnit> mark up single sentences.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE diasdemDocument SYSTEM "DiasdemDocument.dtd">

<diasdemDocument> ...

<text>Der Handel mit Waren aller Art sowie Import und Export. ...</text>

<textUnits>

<textUnit>Der Handel mit Waren aller Art sowie Import und Export.</textUnit> ...

<textUnit>Stammkapital: 50*000 DM.</textUnit>

<textUnit>Gesellschaft mit beschränkter Haftung.</textUnit> ...

<textUnit>Einzelvertretungsbefugnis kann erteilt werden.</textUnit>

<textUnit>Marion Marcella Adolph geb* Priester, 22*03*1957, Offenbach, ist zur

Geschäftsführerin bestellt.</textUnit> ...

<textUnit>Nicht eingetragen: Die Bekanntmachungen der Gesellschaft erfolgen im

Bundesanzeiger.</textUnit>

</textUnits>

</diasdemDocument>

Each asterisk either replaces a full stop in a known abbreviation (e.g., “geb.” is
contained in Abbreviations File) or that is matched by a regular expression in Full
Stop Regex File. For example, the date literal “22.03.1957” is matched by the regular
expression “([0-9]{1,2})\.([\]*[0-9]{1,2})\.([\]*[0-9]{2,4})”. Due to this match, the
original date literal “22.03.1957” has been replaced by the corresponding replacement
string “$1*$2*$3” which results in “22*03*1957”.

Create Text Units: Summary

Module: File → Create Text Units

Use Case: The user must pre-process all imported texts as part of the DIAsDEM
KDD process for semantic tagging of domain-specific texts archives. Cre-
ating text units is pre-processing phase 1 of 5.

Prerequisites: Each XML file must conform to the XML DTD DiasdemDocument.dtd
that is described in section 4.1 on page 75.

Result: Each intermediate XML file of the collection is extended by a new section
<textUnits> whose elements <textUnit> mark up either single sentences
(Heuristic Sentence Identifier) or the entire text (Text as a Single Text

19

3 Case Study – 3.2 Text Pre-Processing

Unit). Any previously existing section <textUnits> will be completely
replaced by a new one.

Additionally, the DIAsDEMgui preferences Default Collection File, De-
fault Project Directory, Default Abbreviations File and Default Full Stop
Regex File are set and updated, respectively.

Remarks: Creating text units is a prerequisite for the remaining pre-processing
phases 2 (i.e., tokenization) through 5 (i.e., lemmatization). Take the fol-
lowing side effect into consideration: All asterisks contained in the original
text document might subsequently be replaced by full stops.

Create Text Units: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: DIAsDEMgui preference Default Collection File

Text Unit Algorithm: If the recommended option Heuristic Sentence Identifier is en-
abled, this module heuristically identifies sentences for subsequent se-
mantic annotation. If the option Text as a Single Text Unit is enabled,
the entire text will be marked up as a single text unit. In the latter case,
the entire text will be annotated by one XML tag.

Abbreviations File: Valid local file name of existing file that contains known abbrevia-
tions in the format described in section 4.2.1 on page 76; file extension:
.txt; default value: DIAsDEMgui preference Default Abbreviations File

Full Stop Regex File: Valid local file name of existing file that contains regular expres-
sions in the format described in section 4.2.1 on page 76; file extension:
.txt; default value: DIAsDEMgui preference Default Full Stop Regex File

Replaced Full Stops : If the recommended option Keep Asterisks for Tokenization is en-
abled, asterisks that replace full stops will be retained for usage in the
subsequent tokenization phase. Otherwise, all asterisks will be replaced
by full stops before this module terminates.

3.2.4 Tokenizing Text Units

After creating text units, tokenizing text units is the second phase of text pre-processing.
Tokenization segments text units into individual words and tokens, respectively. Addi-
tionally, text units are normalized in order to map for example various different date
literals (e.g., “1 Jan 2003” and “1.1.2003”) onto a canonical date representation (e.g.,
“01.01.2003”). Moreover, multi-token terms such as “for example” are identified to sub-
sequently process them as single tokens. Select File → Create Text Units and input the
following parameters:

20

3 Case Study – 3.2 Text Pre-Processing

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Tokenize Regex File ${PARAMETER HOME}/createTextUnits/de/TokenizeRegexDE.txt
Normalize Regex File ${PARAMETER HOME}/createTextUnits/de/NormalizeRegexDE.txt
Multi Token Words File ${PARAMETER HOME}/createTextUnits/de/MultiTokenWordsDE.txt
Replaced Full Stops Replace Asterisks in Text Units

Figure 3.6: Tokenize Text Units window of DIAsDEM Workbench 2.0

Click on OK to start the process of text unit tokenization, text unit normalization and
identification of multi-token terms in text units. Each processing step can be fully param-
eterized by editing regular expressions in the corresponding parameter file. The heuristic
normalization algorithm does not separate asterisks from their surrounding characters,
because an asterisk corresponds to a previously replaced full stop. Therefore, Tokenize
Regex File should not include regular expressions matching asterisks. Text units are
normalized by applying regular expressions and substituting matching sequences with
the corresponding replacement string. Additionally, blank spaces in known multi-token
terms (e.g., “for example”) are replaced by underscores (e.g., “for example”). Finally,
all asterisks that are found in the already existing section <textUnits> as well as the
new section <textUnitsTokenized> are replaced by full stops.

Check the contents of the file ${PROJECT HOME}/xml/file10780.txt.xml. This inter-
mediate XML document has been extended by the new section <textUnitsTokenized>
whose elements <textUnitTokenized> mark up single, tokenized and normalized sen-
tences.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE diasdemDocument SYSTEM "DiasdemDocument.dtd">

<diasdemDocument> ...

<text>Der Handel mit Waren aller Art sowie Import und Export. ...</text>

<textUnits> ...

21

3 Case Study – 3.2 Text Pre-Processing

<textUnit>Stammkapital: 50.000 DM.</textUnit>

<textUnit>Gesellschaft mit beschränkter Haftung.</textUnit> ...

<textUnit>Marion Marcella Adolph geb. Priester, 22.03.1957, Offenbach, ist zur

Geschäftsführerin bestellt.</textUnit> ...

<textUnit>Nicht eingetragen: Die Bekanntmachungen der Gesellschaft erfolgen im

Bundesanzeiger.</textUnit>

</textUnits>

<textUnitsTokenized> ...

<textUnitTokenized>Stammkapital : 50000 DM .</textUnitTokenized>

<textUnitTokenized>Gesellschaft_mit_beschränkter_Haftung .</textUnitTokenized> ...

<textUnitTokenized>Marion Marcella Adolph geb. Priester , 22.03.1957 , Offenbach ,

ist zur Geschäftsführerin bestellt .</textUnitTokenized> ...

<textUnitTokenized>Nicht eingetragen : Die Bekanntmachungen der Gesellschaft

erfolgen im Bundesanzeiger .</textUnitTokenized>

</textUnitsTokenized>

</diasdemDocument>

The module works as follows: Firstly, all regular expressions listed in Tokenization
Regex File are matched against each text unit. For example, the character subsequence
“e.” of the string “This is a sentence. There” is matched by the regular expression
“(\S)(\.|\!|\?)”. This matching character subsequence is thus substituted by the re-
placement string “$1\$2” which results in the following tokenized text: “This is a sen-
tence . There”. Secondly, each regular expression listed in Normalization Regex File is
matched against the text units. Analogously, matching character subsequences are sub-
stituted by the corresponding replacement string. Thirdly, multi-token terms contained
in Multi Token Words File are looked up in all text units. Each identified multi-token
term is reduced to a single token by replacing existing term-separating blank spaces with
underscores.

Tokenize Text Units: Summary

Module: File → Tokenize Text Units

Use Case: The user must pre-process all imported texts as part of the DIAsDEM
KDD process for semantic tagging of domain-specific texts archives. To-
kenizing text units is pre-processing phase 2 of 5.

Prerequisites: Each XML file must conform to the XML DTD DiasdemDocument.dtd
that is described in section 4.1 on page 75. Specifically, it must contain
the non-mandatory section <textUnits>.

Result: Each intermediate XML file of the collection is extended by a new section
<textUnitsTokenized> whose elements <textUnitTokenized> mark up

22

3 Case Study – 3.2 Text Pre-Processing

tokenized and normalized text units. Identified multi-token are modi-
fied by replacing blank spaces with underscores. Any previously existing
section <textUnitsTokenized> will be completely replaced by a new one.

Additionally, the DIAsDEMgui preferences Default Collection File, De-
fault Project Directory, Default Normalize Regex File, Default Tokenize
Regex File and Default Multi Token Words File are set and updated,
respectively.

Remarks: Tokenizing text units is a prerequisite for the remaining pre-processing
phases 3 (i.e., named entity extraction) through 5 (i.e., lemmatization).

Tokenize Text Units: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: DIAsDEMgui preference Default Collection File

Tokenize Regex File: Valid local file name of existing file that contains regular expres-
sions in the format described in section 4.2.2 on page 77; file extension:
.txt; default value: DIAsDEMgui preference Default Tokenize Regex File;

Normalize Regex File: Valid local file name of existing file that contains regular expres-
sions in the format described in section 4.2.2 on page 77; file extension:
.txt; default value: DIAsDEMgui preference Default Normalize Regex
File

Multi Token Words File: Valid local file name of existing file that contains known multi-
token terms in the format described in section 4.2.2 on page 77; file exten-
sion: .txt; default value: DIAsDEMgui preference Default Multi Token
Words File

Replaced Full Stops : If the recommended option Replace Asterisks in Text Units is en-
abled, all asterisks contained in sections <textUnits> and <textUnits-
Tokenized> will be replaced by full stops before this module terminates.
Otherwise, asterisks contained in these section will not be replaced by full
stops.

3.2.5 Replacing Named Entities

After creating and tokenizing text units, identifying named entities (e.g., persons or
companies) and replacing them by placeholders constitutes the third phase of text pre-
processing. Instances of extracted named entities might thereafter serve as attribute
values in semantic XML tags. For example, “Karsten Winkler” is an instance of named
entity type “person”. Based on lists and regular expressions, DIAsDEM Workbench can

23

3 Case Study – 3.2 Text Pre-Processing

currently identify named entities of the following types: “person”, “company”, “place”,
“date”, “amount of money”, “paragraph”, “email” and “url”. Select File → Replace
Named Entities and type in the following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Forenames File ${PARAMETER HOME}/replaceNamedEntities/de/default/

ForenamesDE.txt

Surnames File ${PARAMETER HOME}/replaceNamedEntities/de/default/
SurnamesDE.txt

Surname Suffixes File ${PARAMETER HOME}/replaceNamedEntities/de/default/
SurnameSuffixesDE.txt

Middle Initials File ${PARAMETER HOME}/replaceNamedEntities/de/default/
MiddleInitialsDE.txt

Titles File ${PARAMETER HOME}/replaceNamedEntities/de/default/TitlesDE.txt
Places File ${PARAMETER HOME}/replaceNamedEntities/de/default/PlacesDE.txt
Organizations Start File ${PARAMETER HOME}/replaceNamedEntities/de/default/

OrganizationsStartDE.txt

Organizations End File ${PARAMETER HOME}/replaceNamedEntities/de/default/
OrganizationsEndDE.txt

Composite NE File ${PARAMETER HOME}/replaceNamedEntities/de/
commercialRegister/CommercialRegisterExtentedCompositeNE.csv

Regex NE File ${PARAMETER HOME}/replaceNamedEntities/de/
commercialRegister/CommercialRegisterRegexNE.csv

Advanced Options Disabled: Skip Named Entity Replacement, but Copy Text Units

Click on Save to set or update DIAsDEMgui preferences that correspond to the cur-
rent parameter settings. Click the OK button to identify and replace named entities.
Thereafter, check the contents of the file ${PROJECT HOME}/xml/file10780.txt.xml.
This intermediate XML document has been extended by two new sections. The first
new section <namedEntities> contains one element <namedEntity> for each identified
basic, composite and canonical named entity. <textUnitsNamedEntities> is the second
new section and consists of elements <textUnitsNamedEntity> that mark up tokenized
and normalized sentences containing placeholders for identified named entities.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE diasdemDocument SYSTEM "DiasdemDocument.dtd">

<diasdemDocument> ...

<textUnitsTokenized> ...

<textUnitTokenized>Stammkapital : 50000 DM .</textUnitTokenized>

<textUnitTokenized>Gesellschaft_mit_beschränkter_Haftung .</textUnitTokenized> ...

<textUnitTokenized>Marion Marcella Adolph geb. Priester , 22.03.1957 , Offenbach ,

ist zur Geschäftsführerin bestellt .</textUnitTokenized> ...

<textUnitTokenized>Nicht eingetragen : Die Bekanntmachungen der Gesellschaft

erfolgen im Bundesanzeiger .</textUnitTokenized>

</textUnitsTokenized>

<namedEntities> ...

24

3 Case Study – 3.2 Text Pre-Processing

Figure 3.7: Replace Named Entities window of DIAsDEM Workbench 2.0

<namedEntity id="1001" type="amount_of_money">50000 DM</namedEntity> ...

<namedEntity id="1012" type="date">22.03.1957</namedEntity>

<namedEntity id="1013" type="forename">Marion</namedEntity>

<namedEntity id="1014" type="forename">Marcella</namedEntity>

<namedEntity id="1015" type="forename surname">Adolph</namedEntity>

<namedEntity id="1016" type="place surname">Priester</namedEntity>

<namedEntity id="1017" type="place">Offenbach</namedEntity>

<namedEntity id="1018" type="person">1018|null|person|null|Adolph|Marion Marcella|

22.03.1957|null|null|null|null|Priester|Offenbach|null</namedEntity>

<namedEntity id="1019" type="person">1019|null|person|1018|Adolph|Marion Marcella|

22.03.1957|null|null|null|null|Priester|Offenbach|null</namedEntity>

</namedEntities>

<textUnitsNamedEntities> ...

<textUnitNamedEntities>Stammkapital : <namedEntityRef id="1001" />

. </textUnitNamedEntities>

<textUnitNamedEntities>Gesellschaft_mit_beschränkter_Haftung

. </textUnitNamedEntities> ...

<textUnitNamedEntities><namedEntityRef id="1019" /> , ist zur Geschäftsführerin

25

3 Case Study – 3.2 Text Pre-Processing

bestellt . </textUnitNamedEntities> ...

<textUnitNamedEntities>Nicht eingetragen : Die Bekanntmachungen der Gesellschaft

erfolgen im Bundesanzeiger . </textUnitNamedEntities>

</textUnitsNamedEntities>

</diasdemDocument>

The named entity extractor NEEX can be fully parameterized by editing the corre-
sponding parameter files. NEEX is a heuristic named entity extraction module of the
DIAsDEM Workbench that works as follows:

1. Firstly, regular expressions listed in Regex NE File are matched against each text
unit to identify instances of the basic named entities “number”, “date”, “time”,
“amount of money”, “paragraph”, “email” and “url”. For example, named entity
1001 is an instance “50000 DM” of named entity type “amountOfMoney” that
occurs in the tokenized and normalized sentence “Stammkapital : 50000 DM .”

2. Secondly, all tokens of each text unit are looked up in a dictionary to identify
instances of the basic named entities “place”, “organization abbreviation”, “fore-
name”, “surname”, “title” and “middle initial”. Basically, this dictionary com-
prises the contents of Places File, Organizations End File, Forenames File, Sur-
names File, Titles File and Middle Initials File. Additionally, Surname Suffixes
File is used to identify rare surnames due to frequently occuring surname suffixes
such as “isz”. Organizations are extracted by utilizing known abbreviations of
organizations listed in Organizations End File. Additionally, Organizations Start
File contains terms and phrases that frequently precede names of organizations.
All basic named entities are replaced by their respective placeholders in this phase.

In the example above, “Marion” is an instance of named entity type “forename”
and “Offenbach” instantiates the named entity type “place”. Note that a single to-
ken can instantiate various basic named entities. For example, the term “Adolph”
could be either a surname or a forename.

3. Thirdly, rules contained in Composite NE File are applied to text units in order
to identify instances of composite named entities, i.e., “person” and “company”.
Each composite named entity consists of certain basic named entities that occur
in a context described by rules in Composite NE File. For instance, a “person”
can be constructed from basic named entities such as “forename” and “surname”.
If a composite named entity is identified, both textual contents and basic named
entity placeholders matched by the rule will be substituted by the corresponding
composite named entity placeholder.

For instance, the complex rule “<<forename>> <<forename>> <<surname>>
geb. <<surname>> , <<date>> , <<place>>” listed in Composite NE File re-
sults in the instantiation of the complex named entity with ID 1018. This named

26

3 Case Study – 3.2 Text Pre-Processing

entity maps the text “Marion Marcella Adolph geb. Priester , 22.03.1957 , Offen-
bach” onto an instance of composite named entity type “person”.

4. Finally, NEEX applies heuristics to map various occurrences of identical persons
and companies within one text document onto a canonical form. Thereby, all
composite named entity placeholders that probably reference the same real world
entity are replaced by a new placeholder referencing the canonical form of the
corresponding named entities.

In the example above, named entity with ID 1019 corresponds to the canonical form
of person with ID 1018. However, Marion Marcella Adolph is referred to only once
in this Commercial Register entry. Therefore, open the file ${PROJECT HOME}/xml/
file10781.txt.xml that apparently illustrates the concept of canonical complex
named entities. In this file, the canonical named entity with ID 1058 replaces
all other occurrences of named entities (i.e., IDs 1038 and 1053) referring to the
real-world person “Willi Steinberg”.

Replace Named Entities: Summary

Module: File → Replace Named Entities

Use Case: The user must pre-process all imported texts as part of the DIAsDEM
KDD process for semantic tagging of domain-specific texts archives. Iden-
tifying and replacing named entities is pre-processing phase 3 of 5.

Prerequisites: Each XML file must conform to the XML DTD DiasdemDocument.dtd
that is described in section 4.1 on page 75. Specifically, it must contain
the non-mandatory sections <textUnits> and <textUnitsTokenized>.

Result: Each intermediate XML file of the collection is extended by two sections:
All identified named entities are contained in the elements <namedEntity>
of section <namedEntities>. The elements <textUnitNamedEntities>
of the new section <textUnitsNamedEntities> mark up text units con-
taining placeholders for extracted named entities. Previously existing
sections <namedEntities> or <textUnitsNamedEntities> will be com-
pletely replaced by new ones.

Additionally, the DIAsDEMgui preferences Default Collection File, De-
fault Project Directory, Default Forenames File, Default Surnames File,
Default Surname Suffixes File, Default Middle Initials File, Default Title
File, Default Places File, Default Organizations Start File, Default Or-
ganizations End File, Default Composite NE File and Default Regex NE
File are set and updated on request, respectively.

27

3 Case Study – 3.2 Text Pre-Processing

Remarks: Identifying and replacing named entities in text units or actively skipping
named entity replacement is a prerequisite for the two remaining pre-
processing phases (i.e., stopword removal and lemmatization).

Replace Named Entities: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: DIAsDEMgui preference Default Collection File

Forenames File: Valid local file name of existing file that contains a list of forenames
in the format described in section 4.2.3 on page 78; file extension: .txt;
default value: DIAsDEMgui preference Default Forenames File

Surnames File: Valid local file name of existing file that contains a list of surnames in
the format described in section 4.2.3 on page 78; file extension: .txt;
default value: DIAsDEMgui preference Default Surnames File

Surname Suffixes File: Valid local file name of existing file that contains a list of frequent
surname suffixes in the format described in section 4.2.3 on page 78; file
extension: .txt; default value: DIAsDEMgui preference Default Surname
Suffixes File

Middle Initials File: Valid local file name of existing file that contains a list of middle
initials in the format described in section 4.2.3 on page 78; file extension:
.txt; default value: DIAsDEMgui preference Default Middle Initials File

Title File: Valid local file name of existing file that contains a list of academic and
professional titles in the format described in section 4.2.3 on page 78; file
extension: .txt; default value: DIAsDEMgui preference Default Titles
File

Places File: Valid local file name of existing file that contains a list of places (i.e.,
cities) in the format described in section 4.2.3 on page 78; file extension:
.txt; default value: DIAsDEMgui preference Default Places File

Organizations Start File: Valid local file name of existing file that contains terms that
are followed by an organization ending with a known abbreviation in the
format described in section 4.2.3 on page 78; file extension: .txt; default
value: DIAsDEMgui preference Default Organizations Start File

Organizations End File: Valid local file name of existing file that contains a list of or-
ganizational abbreviations in the format described in section 4.2.3 on
page 78; file extension: .txt; default value: DIAsDEMgui preference De-
fault Organizations End File

28

3 Case Study – 3.2 Text Pre-Processing

Composite NE File: Valid local file name of existing file that contains rules for instanti-
ating composite named entities (i.e., persons and companies) in the format
described in section 4.2.3 on page 78; file extension: .csv; default value:
DIAsDEMgui preference Default Composite NE File;

Regex NE File: Valid local file name of existing file that contains regular expressions
for the identification of basic named entities in the format described in
section 4.2.3 on page 78; file extension: .csv; default value: DIAsDEMgui
preference Default Regex NE File

Advanced Options : If the option Skip Named Entity Replacement, but Copy Text Units
is enabled, named entity identification is completely skipped, but a new
section <textUnitsNamedEntities> is created by copying the contents of
<textUnitsTokenized>. This option enables users to quickly meet the
prerequisites of the following pre-processing step (i.e., stopword removal)
without having to bother with named entity extraction.

3.2.6 Removing Stopwords

DIAsDEM Workbench is capable of either removing meaningless stopwords or skipping
stopword removal. In the latter case, a new section <textUnitsStopwords> is created
in each intermediate XML file by simply copying the contents of the existing section
<textUnitsNamedEntities>. As explained in section 1, the DIAsDEM framework pro-
poses the utilization of a controlled vocabulary (i.e., a domain-specific thesaurus) for
dimension reduction. Thus, stopword removal can be skipped in this case study. Select
File → Remove Stopwords and type in the following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Stopword File
Advanced Options Enabled: Skip Stopword Removal, but Copy Text Units

Click on OK to start the process of skipping stopword removal. Check the contents of
the file ${PROJECT HOME}/xml/file10780.txt.xmlwhich has been extended by the new
section <textUnitsStopwords>. In this case study, each element <textUnitStopwords>
is an exact copy of corresponding element <textUnitNamedEntities>.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE diasdemDocument SYSTEM "DiasdemDocument.dtd">

<diasdemDocument> ...

<textUnitsNamedEntities> ...

<textUnitNamedEntities>Stammkapital : <namedEntityRef id="1001" />

. </textUnitNamedEntities>

<textUnitNamedEntities>Gesellschaft_mit_beschränkter_Haftung

29

3 Case Study – 3.2 Text Pre-Processing

Figure 3.8: Remove Stopwords window of DIAsDEM Workbench 2.0

. </textUnitNamedEntities> ...

<textUnitNamedEntities><namedEntityRef id="1019" /> , ist zur Geschäftsführerin

bestellt . </textUnitNamedEntities> ...

<textUnitNamedEntities>Nicht eingetragen : Die Bekanntmachungen der Gesellschaft

erfolgen im Bundesanzeiger . </textUnitNamedEntities>

</textUnitsNamedEntities>

<textUnitsStopwords> ...

<textUnitStopwords>Stammkapital : <namedEntityRef id="1001" />

. </textUnitStopwords>

<textUnitStopwords>Gesellschaft_mit_beschränkter_Haftung

. </textUnitStopwords> ...

<textUnitStopwords><namedEntityRef id="1019" /> , ist zur Geschäftsführerin

bestellt . </textUnitStopwords> ...

<textUnitStopwords>Nicht eingetragen : Die Bekanntmachungen der Gesellschaft

erfolgen im Bundesanzeiger . </textUnitStopwords>

</textUnitsStopwords>

</diasdemDocument>

If stopword removal had been enabled, all stopwords listed in Stopword File would
have been removed from the elements of section <textUnitsStopwords>. The text file
${PARAMETER HOME}/removeStopwords/de/StopwordsDE.txt contains a default Ger-
man stopword list that can be modified according to domain-specific needs.

Remove Stopwords: Summary

Module: File → Remove Stopwords

Use Case: The user must pre-process all imported texts as part of the DIAsDEM
KDD process for semantic tagging of domain-specific texts archives. Re-
moving stopwords is pre-processing phase 4 of 5.

30

3 Case Study – 3.2 Text Pre-Processing

Prerequisites: Each XML file must conform to the XML DTD DiasdemDocument.dtd
that is described in section 4.1 on page 75. Specifically, it must contain
the non-mandatory sections <textUnits>, <textUnitsTokenized> and
<textUnitsNamedEntities>.

Result: Each intermediate XML file of the collection is extended by a new section
<textUnitsStopwords>. Unless Skip Stopword Removal, but Copy Text
Units is enabled, elements <textUnitStopwords> will not contain terms
listed in Stopwords File. Any previously existing section <textUnits-
Stopwords> will be completely replaced by a new one.

Additionally, the DIAsDEMgui preferences Default Collection File, De-
fault Project Directory and Default Stopwords File are set and updated,
respectively.

Remarks: Removing stopwords or actively skipping stopword removal is a prerequi-
site for the remaining pre-processing phase (i.e., lemmatization).

Remove Stopwords: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: DIAsDEMgui preference Default Collection File

Stopwords File: Valid local file name of existing file that contains stopwords in the for-
mat described in section 4.2.4 on page 83; file extension: .txt; default
value: DIAsDEMgui preference Default Stopwords File

Advanced Options : If Skip Stopword Removal, but Copy Text Units is enabled, stopword
removal is completely skipped, but a new section <textUnitsStopwords>
is created by copying contents from the existing section <textUnitsNamed-
Entities>. This option enables users to quickly meet the prerequisites
of the following pre-processing step (i.e., lemmatization) without having
to remove stopwords.

3.2.7 Creating Lemma Forms

Lemmatization of terms is the final text pre-processing step. During this step, the
grammatical roots of terms (i.e., their lemma form) are determined and each term is
replaced with its lemma form. For example, each inflected verb form (e.g., “went”) is
mapped onto its infinite form (e.g., “go”). This pre-processing step drastically reduces
the number of distinct terms occuring in the collection. Hence, lemmatization also
facilitates both the establishment and the usage of archive-specific thesauri which are
required by DIAsDEM Workbench for controlled dimension reduction.

31

3 Case Study – 3.2 Text Pre-Processing

DIAsDEM Workbench supports two different methods of creating lemma forms. They
can either be automatically determined by TreeTagger or each term can be looked up in
a user-supplied list of known lemma forms. Note that using TreeTagger is the preferred
method of lemmatization. TreeTagger is a multilingual part-of-speech tagger developed
by Helmut Schmid [Sch94]. Currently, TreeTagger for Linux and Solaris can be used for
research purposes free of charge. However, the list-based method of determining lemma
forms is applied in this case study to avoid any problems with installing the part-of-
speech tagger. In contrast to ‘real’ part-of-speech tagging, this lexicon-based method
has the following main disadvantage: Lemma forms can only be determined for terms
whose grammatical root forms are listed in the file of known lemma forms. However,
select File → Create Lemma Forms and type in the following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Lemmatization Algorithm Look Up Lemma Form in List

TreeTagger Input File
TreeTagger Output File
Known Lemma Forms ${PARAMETER HOME}/lemmaForms/de/

Case1LemmaFormsTreeTagger.txt

Unknown Lemma Forms ${PARAMETER HOME}/lemmaForms/de/
Case1LemmaFormsTreeTagger NewTerms.txt

Advanced Options Disabled: Skip Lemmatization, but Copy Text Units

Disabled: Create New Known Lemma Forms File

Click the OK button to start the process of lemmatization. Thereafter, check the
contents of the file ${PROJECT HOME}/xml/file10780.txt.xmlwhich has been extended
by the new section <textUnitsLemmaForms>. Its elements <textUnitLemmaForms>mark
up lemma forms and named entity placeholders of the corresponding text units.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE diasdemDocument SYSTEM "DiasdemDocument.dtd">

<diasdemDocument> ...

<textUnitsStopwords> ...

<textUnitStopwords>Stammkapital : <namedEntityRef id="1001" />

. </textUnitStopwords>

<textUnitStopwords>Gesellschaft_mit_beschränkter_Haftung

. </textUnitStopwords> ...

<textUnitStopwords><namedEntityRef id="1019" /> , ist zur Geschäftsführerin

bestellt . </textUnitStopwords> ...

<textUnitStopwords>Nicht eingetragen : Die Bekanntmachungen der Gesellschaft

erfolgen im Bundesanzeiger . </textUnitStopwords>

</textUnitsStopwords>

<textUnitsLemmaForms> ...

<textUnitLemmaForms>Stammkapital : <namedEntityRef id="1001" />

. </textUnitLemmaForms>

<textUnitLemmaForms>Gesellschaft_mit_beschränkter_Haftung_unknown

32

3 Case Study – 3.2 Text Pre-Processing

Figure 3.9: Create Lemma Forms window of DIAsDEM Workbench 2.0

. </textUnitLemmaForms> ...

<textUnitLemmaForms><namedEntityRef id="1019" /> , sein zur Geschäftsführerin

bestellen . </textUnitLemmaForms> ...

<textUnitLemmaForms>nicht eintragen : d Bekanntmachung d Gesellschaft

erfolgen im Bundesanzeiger . </textUnitLemmaForms>

</textUnitsLemmaForms>

</diasdemDocument>

Note, the list of known lemma forms had been created using TreeTagger. In the
file shown above, the inflected verb form “ist” occuring in <textUnitsStopwords> is
mapped onto its infinitive form “sein” in the corresponding <textUnitLemmaForms>.
TreeTagger has been unable to determine the grammatical root form for terms whose
lemma forms are suffixed by “ unknown” .

During the iterative clustering phase, text unit vectors are clustered based on similarity
of their contents in order to discover semantic XML tags. Note that text unit vectors are
created by mapping all elements of the section <textUnitsLemmaForms> onto vectors.
Thereby, vector dimensions correspond to so-called text units descriptors which are

33

3 Case Study – 3.2 Text Pre-Processing

defined in a domain-specific thesaurus. Consequently, each thesaurus should only contain
case-sensitive lemma forms that truely occur in the section <textUnitsLemmaForms>.

Create Lemma Forms: Summary

Module: File → Create Lemma Forms

Use Case: The user must pre-process all imported texts as part of the DIAsDEM
KDD process for semantic tagging of domain-specific texts archives. Cre-
ating lemma forms is pre-processing phase 5 of 5.

Prerequisites: Each XML file must conform to the XML DTD DiasdemDocument.dtd
that is described in section 4.1 on page 75. Specifically, it must con-
tain the non-mandatory sections <textUnits>, <textUnitsTokenized>,
<textUnitsNamedEntities> and <textUnitsStopwords>.

Result: Each intermediate XML file of the collection is extended by a new sec-
tion <textUnitsLemmaForms>. Unless Skip Lemmatization, but Copy Text
Units is enabled, elements <textUnitLemmaForms> will contain grammat-
ical root forms of the corresponding elements in section <textUnitStop-
words>. Any previously existing section <textUnitsLemmaForms> will be
completely replaced by a new one.

Additionally, the DIAsDEMgui preferences Default Collection File, De-
fault Project Directory, Default TreeTagger Input File, Default TreeTagger
Output File, Default Known Lemma Forms File and Default Unknown
Lemma Forms File are set and updated, respectively.

Remarks: Creating lemma forms or actively skipping lemmatization is a prerequisite
for the iterative clustering phase.

Create Lemma Forms: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: DIAsDEMgui preference Default Collection File

Lemmatization Algorithm: If Use TreeTagger to Determine Lemma Form is enabled, the
external part-of-speech tagger is employed. In this case, TreeTagger must
have been successfully installed and the local environment variable PATH
must include the TreeTagger subdirectories /bin and /cmd before DIAs-
DEM Workbench is started. If Look Up Lemma Form in List is enabled,
a list of a priory known grammatical root forms is used for lemmatization.

34

3 Case Study – 3.3 Iterative Clustering

TreeTagger Input File: Must be set if Use TreeTagger to Determine Lemma Form is
enabled; valid local file name of new or existing file that will be replaced;
this temporary file is created by DIAsDEM Workbench and includes text
to be POS-tagged by TreeTagger; file extension: .txt; default value: DI-
AsDEMgui preference Default TreeTagger Input File

TreeTagger Output File: Must be set if Use TreeTagger to Determine Lemma Form is
enabled; valid local file name of new or existing file that will be replaced;
this temporary file is created by TreeTagger and includes the results of
POS-tagging; file extension: .txt; default value: DIAsDEMgui preference
Default TreeTagger Output File

Known Lemma Forms : Must be set if Look Up Lemma Form in List is enabled; valid
local file name of existing file that contains terms along with their lemma
forms in the format described in section 4.2.5 on page 83; file exten-
sion: .txt; default value: DIAsDEMgui preference Default Known Lemma
Forms File

Unknown Lemma Forms : Must be set if Look Up Lemma Form in List is enabled; valid
local file name of new or existing file that is created or extended by DIAs-
DEM Workbench ; includes terms occuring in the collection that are not
listed in Known Lemma Forms as well as the context of their occurrence
(i.e., the sentence); can be used to update Known Lemma Forms ; format
described in section 4.2.5 on page 83; file extension: .txt; default value:
DIAsDEMgui preference Default Unknown Lemma Forms File

Advanced Options : If Skip Lemmatization, but Copy Text Units is enabled, creating
lemma forms is completely skipped, but a new section <textUnitsLemma-
Forms> is created by copying the contents of <textUnitsStopwords>.
This option enables users to quickly meet the prerequisites of the following
clustering phase without having to create lemma forms. If Create New
Lemma Forms File is enabled along with Use TreeTagger to Determine
Lemma Form, all terms and the corresponding lemma forms determined
by TreeTagger are saved for later usage as a file of Known Lemma Forms.

3.3 Iterative Clustering

3.3.1 Creating Word Statistics

During the clustering phase, DIAsDEM Workbench requires a controlled vocabulary in
the form of a domain-specific thesaurus. Text units are mapped onto vectors whose
dimensions correspond to thesaurus descriptors. Creating the word frequency statistics

35

3 Case Study – 3.3 Iterative Clustering

for a collection is the first step in establishing or updating a thesaurus for subsequent use
in clustering. Word frequency statistics give an insight into the specific word frequency
distribution prevalent in a document collection. Based on word frequency statistics, an
initial thesaurus can either be created or an existing thesaurus can be updated by adding,
editing or removing terms of interest. Although there exists a prepared thesaurus for
this case study, creating and inspecting word frequency statistics is described in this
tutorial for reasons of completeness. Therefore, select File → Create Word Statistics
and provide the following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
XML Source Tag textUnitsLemmaForms

Word Statistics File ${PROJECT HOME}/lemmaForms.dws
Advanced Options Enabled: Export Original Texts in CSV Format

Enabled: Export Words Statistics in CSV Format

Enabled: Export Words Statistics in HTML Format

Figure 3.10: Create Word Statistics window of DIAsDEM Workbench 2.0

Click on OK to start the process of creating word statistics. Thereafter, check the
contents of the directory ${PROJECT HOME} which now contains the DIAsDEM-specific
word statistics file lemmaForms.dws. It can be displayed by Tools → Word Statistics
Viewer. Additionally, this directory contains word frequency statistics files in CSV
(lemmaForms.csv) and HTML (lemmaForms.html) format. Due to the settings of ad-
vanced options, all original texts of this collection have also been exported into two CSV
files, lemmaForms.orig.csv and lemmaForms.lemma.csv. The former contains the file
name of each document and its original text as stored in section <textUnits>. The latter
file contains lemmatized texts (i.e., the contents of the section <textUnitsLemmaForms>)
along with their file names. Both export files can be input to further text analysis and
text mining activities employing third-party software.

36

3 Case Study – 3.3 Iterative Clustering

Create Word Statistics: Summary

Module: File → Create Word Statistics

Use Case: The user wants to analyze the word frequency distribution prevalent in a
document collection to get insight into the particularities of the specific
vocabulary. Additionally, the user might want to create an initial the-
saurus for the collection or may want to edit an existing thesaurus based
on collection-specific term frequencies.

Prerequisites: Each XML file must conform to the XML DTD DiasdemDocument.dtd
that is described in section 4.1 on page 75. Specifically and according
to the parameter settings, XML files must contain the non-mandatory
sections <textUnitsTokenized> or <textUnitsLemmaForms>.

Result: Word Statistics File contains all terms and their absolute frequencies that
occur in the specified sections of XML documents in collection Collection
File. Additionally, the DIAsDEMgui preferences Default Collection File
and Default Word Statistics File are set and updated, respectively.

Create Word Statistics: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: DIAsDEMgui preference Default Collection File

XML Source Tag : If textUnitsTokenized is enabled, term frequencies are computed for
the contents of section <textUnitsTokenized>. If textUnitsLemmaForms
is enabled, term frequencies are instead computed for the contents of
section <textUnitsLemmaForms>. The latter setting should be used in
case of creating word frequency statistics for thesaurus establishment or
update, because only lemmatized text units are mapped onto vectors for
subsequent clustering. Hence, thesauri to be employed by DIAsDEM
Workbench must only contain lemma forms of both descriptors and non-
descriptors.

Word Statistics File: Valid local file name of new or existing file that is created or
replaced by DIAsDEM Workbench; file extension: .dws; default value:
DIAsDEMgui preference Default Word Statistics File

Advanced Options : If Export Original Texts in CSV Format is enabled, two CSV files
are created in ${PROJECT HOME} that contain the file name and the textual
contents of each document. If Export Word Statistics in CSV Format is
enabled, a CSV file is created in ${PROJECT HOME} that contains all terms

37

3 Case Study – 3.3 Iterative Clustering

and their respective absolute frequencies. If Export Word Statistics in
HTML Format is enabled, an HTML file is created in ${PROJECT HOME}
that contains terms and their absolute frequencies.

3.3.2 Viewing Word Statistics

Select Tools → View Word Statistics to display the previously created statistics file.
Thereafter, click on Open Statistics and choose the word statistics file ${PROJECT HOME}
/lemmaForms.dws. After entering the minimum term frequency of words to be displayed
(e.g., 5), its contents are shown in the left panel as illustrated in Figure 3.11. Word
statistics can either be sorted by decreasing frequency or by ascending term. To sort the
list of terms, click the buttons Sort by Freq. and Sort by Term, respectively.

Figure 3.11: Word Statistics Viewer of DIAsDEM Workbench 2.0

Terms appearing in the left panel of Word Statistics Viewer can be compared with
an existing DIAsDEM-specific thesaurus file. To proceed, click the Open Thesaurus
button and choose the thesaurus file ${PARAMETER HOME}/thesauri/de/CommercialRe-
gisterThesaurus.dth.

As illustrated in Figure 3.12, the entire thesaurus is initially displayed in the right
panel. Each line corresponds to one thesaurus term that can either be a descriptor or
a non-descriptor referencing an associated descriptor term. For example, the thesaurus
entry Ablehnung (D; Case2) corresponds to descriptor (“D”) term “Ablehnung” which
is a valid text unit descriptor only in case study 2. Note again, valid text unit descriptors
correspond to dimensions of text unit vectors that are subsequently clustered. According
to thesaurus entry <<person>> (D; Case1), the named entity type “Person” is a valid
descriptor in case study 1. For each identified instance of named entity type “Person”
in a text unit, the descriptor counter will be incremented. Finally, the thesaurus entry

38

3 Case Study – 3.3 Iterative Clustering

Figure 3.12: Word Statistics Viewer of DIAsDEM Workbench 2.0

beginnen (N; Beginn) states that the non-descriptor (“N”) term “beginnen” is mapped
onto its descriptor term “Beginn”. If the term “beginnen” occurs in a text unit, the
counter of its descriptor term “Beginn” will be incremented. However, this term is a
valid descriptor only in case study 1 according to Beginn (D; Case1).

Click the Incl. button in the right panel to filter word statistics terms that are also
descriptor or non-descriptor thesaurus terms. Additionally, the term frequency in the
current collection is shown for each thesaurus term in the right panel. In order to filter
word statistics terms that are not contained in the thesaurus, click the Excl. button in
the right panel. Frequently occuring and semantically important terms that are not listed
in the thesaurus are candidates for thesaurus updates. In contrast, infrequently occuring
terms could be removed from the thesaurus in order to reduce the dimensionality of text
units vectors. However, do not remove important concepts such as “Tätigkeit” from
the thesaurus that are descriptor terms for less important non-descriptors. Note, the
frequent term <<1001>> is a placeholder for every first named entity in a text. Do not
include named entity placeholders in the thesaurus, because they replace instances of
various named entity types, e.g. “Person” or “Date”.

After analyzing the statistics, you might consider to add the frequently occuring term
“Bundesanzeiger” as a descriptor to the thesaurus. Moreover, the rather frequent term
“Bauvorhaben” should be a non-descriptor term pointing to the important descriptor
“Tätigkeit”. Additionally, thesaurus term “Aktionär” should be removed from the the-
saurus due to its infrequent occurrence in the collection. Thesaurus updates will be
explained in the next section. Therefore, do not close the Word Statistics Viewer yet.

39

3 Case Study – 3.3 Iterative Clustering

3.3.3 Editing Domain-Specific Thesauri

DIAsDEM Workbench includes two German thesauri in the subdirectories of directory
${PARAMETER HOME}/thesauri/de. They contain application-specific vocabularies for
case studies related to Commercial Register entries and corporate news, respectively.
Thesauri that should be employed in different application domains can be created by
Tools → Create Initial Thesaurus as described in section 3.5.1. However, the remain-
der of this section focuses on the process of updating an existing, DIAsDEM-specific
thesaurus by adding, editing and removing terms. Select Tools → Thesaurus Editor,
click on Open and choose the thesaurus file CommercialRegisterThesaurus.dth in the
directory ${PARAMETER HOME}/thesauri/de/commercialRegister.

Figure 3.13: Thesaurus Editor of DIAsDEM Workbench 2.0

To add the first new term, click onNew and enter “Bundesanzeiger” which is thereafter
displayed in the right editor pane as the selected, editable thesaurus term. Similarly to
many Windows applications, you might also use the system clipboard to transfer textual
contents for example from Word Statistics Viewer to Thesaurus Editor. Using the
mouse, select the term “Bundesanzeiger” inWord Statistics Viewer. The highlighted can
be copied to the clipboard by the keyboard shortcut CTRL-C. Afterwards, the contents
of the clipboard can be pasted into other documents by placing the cursor at the desired
position and using the keyboard shortcut CTRL-V. Moreover, the keyboard shortcut
CTRL-X can be used to cut (i.e., remove) selected text from the source document after
copying it to the clipboard.

Each thesaurus term must either be a descriptor or a non-descriptor that references
an associated descriptor term. Due to its frequent occurrence and semantic importance,
the German word “Bundesanzeiger” should be a text unit vector dimension and must
thus be a descriptor. Therefore, change the Type of Term from unknown to Descriptor.

40

3 Case Study – 3.3 Iterative Clustering

The contents of the field Scope Notes can be used to filter valid descriptors during the
process of creating text unit vectors. Hence, an established thesaurus can be employed in
different case studies. The term “Bundesanzeiger” should be a valid descriptor in the first
case study only. Thus, case-sensitively enter “Case1” in the field Scope Notes. Finally,
the new term is added to the current thesaurus by clicking on OK. Otherwise, click the
Cancel button to discard any modifications of the selected term. Figure 3.13 depicts the
Thesaurus Editor before committing the insertion of the new term “Bundesanzeiger”.

Figure 3.14: Thesaurus Editor of DIAsDEM Workbench 2.0

Insert the second new term “Bauvorhaben” into the thesaurus and change its Type
of Term from unknown to Non-Descriptor. For each non-descriptor, an associated de-
scriptor must be specified in the field Use Descriptor. Hence, type the descriptor term
“Tätigkeit” in this field. Note, the Use Descriptor field must not contain other non-
descriptors or terms that are not included in the current thesaurus. As before, input
“Case1” in the field Scope Notes as well. The fields Term Level and Synonyms are not
used in the current version of DIAsDEM Workbench. Figure 3.14 illustrates Thesaurus
Editor before committing the insertion of the term “Bauvorhaben”.

Existing terms such as “Bundesanzeiger” and “Bauvorhaben” can be modified by
clicking the Edit button and afterwards entering the term of interest. Alternatively, a
term in the left editor panel can be selected using the mouse. Thereafter, clicking on
Edit will automatically open the corresponding term in the right editor panel for update.
Analogously, terms can be removed from the thesaurus by clicking the Delete button.
However, make sure not to delete descriptor terms that are referenced by remaining
non-descriptors. Finally, remove the German term “Aktionär”, because it occurs only
once in the entire collection of Commercial Register entries.

Click the Info button and look at the brief thesaurus summary that lists the num-

41

3 Case Study – 3.3 Iterative Clustering

ber of term, descriptors and non-descriptors in the current thesaurus. Keep in mind
that the number of descriptors should be kept as low as possible, because DIAsDEM
Workbench does not employ uncontrolled techniques for dimensionality reduction such
as singular value decomposition. As a rule of thumb, the number of descriptors should
not exceed 500 terms. Click the Save button in order to commit the entire thesaurus up-
date. After saving, inspect the contents of the directory ${PARAMETER HOME}/thesauri/
de/commercialRegister. In addition to updating the DIAsDEM-specific thesaurus file,
saving a thesaurus always results in the creation of thesaurus files in CSV and HTML
format in the same directory. The latter contains information about all thesaurus terms
and an explicit mapping of descriptors onto their associated non-descriptors. Finally,
click the respective Exit buttons to close Thesaurus Editor and Word Statistics Viewer.

3.3.4 Creating Text Unit Vectors in Iteration 1

Concerning the clustering of text unit vectors, DIAsDEM Workbench implements both
a plug-in and a plug-out concept that enables the usage of various clustering algorithms.
Users can either employ one of three built-in Weka [WF99] clustering algorithms (i.e.,
k-means, Cobweb and EM) or utilize algorithms supplied by external data mining ap-
plications. To ensure this flexibility, DIAsDEM Workbench is capable of exporting text
unit vector files in three different formats. As the k-means clustering algorithm provided
by the Java-based Weka data mining library is employed is this case study, vectors are
exported in the Weka-specific ARFF format only. However, all three formats are briefly
described in section 4.3.1 on page 85. To export text unit vectors for the first clustering
iteration, select File → Create Text Unit Vectors and enter the following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Iteration First Clustering Iteration

Vector File Format ARFF: Weka Data Mining Project

Text Unit Vectors File ${PROJECT HOME}/vectors1.arff
Thesaurus File ${PARAMETER HOME}/thesauri/de/commercialRegister/

CommercialRegisterThesaurus.dth

Text Unit Descriptors Descriptors whose Scope Notes Contain String

Case1

Term Frequency Boolean Term Frequency

Term Weighting TFxIDF Term Weighting

Advanced Options Disabled: Create File for Discovery of Term Associations

Enabled: Create Meta-Data File for Text Unit Vectors File

Click the OK button to export text unit vectors according these parameters. In the
first clustering iteration, each text unit in section <textUnitsLemmaForms> is mapped
onto its vector representation. Let D be the set of descriptors. The dimensionality of text
unit vectors corresponds to |D| = 74 descriptors in CommercialRegisterThesaurus.dth
that contain the string “Case1” in their respective scope notes.

42

3 Case Study – 3.3 Iterative Clustering

Figure 3.15: Create Text Unit Vectors window of DIAsDEM Workbench 2.0

The mapping of text units onto text unit vectors works as follows: Firstly, a boolean
vector is created for each text unit. Each vector component i = 1, . . . , |D| represents
the boolean term frequency of descriptor di in its text unit. Vector component i is 1
if descriptor di occurs in the corresponding text unit or 0 otherwise. Secondly, boolean
vectors are weighted by multiplying each vector component i and the inverse document
frequency of descriptor di. Let U be the set of text units in the collection and let freq(di)
be the absolute frequency of descriptor di in the same collection. The inverse document
frequency of descriptor di is here defined as log(|U |/freq(di)). This weighting schema
favors terms that occur in relatively few text units, because these terms have a higher
discriminative power than terms occuring in almost all text units. To sum up, each
vector component i represents the product of boolean term frequency of descriptor di in
the corresponding sentence and inverse document frequency of descriptor di within the
entire collection. Open the meta-data file ${PROJECT HOME}/vectors1.arff.meta that
lists the term frequency as well as the inverse document frequency for each descriptor:

43

3 Case Study – 3.3 Iterative Clustering

...

D1_Aktie = Aktie; Term Frequency = 38; Term Weight = 5.64144

D2_Gesellschafter = Gesellschafter; Term Frequency = 201; Term Weight = 3.97572

...

D74_Anspruch = Anspruch; Term Frequency = 9; Term Weight = 7.08180

Note that descriptor term “Aktie” and its associated non-descriptors such as “Na-
mensaktie” occur 38 times in the collection of Commercial Register entries. Its term
weight which here equals its inverse document frequency is greater than the term weight
of “Gesellschafter”, because “Aktie” occurs less frequently in this collection. According
to the applied TFxIDF weighting schema, “Aktie” has a greater discriminative power
than “Gesellschafter” due to its relatively infrequent occurrence in the collection.

The text unit vector file ${PROJECT HOME}/vectors1.arff contains all vectors to
be clustered in the Weka-specific ARFF format [WF99]. ARFF-files include meta-
data about the relation and its attributes (i.e., their names and domains) as well as
the actual data below @data. For example, the second vector corresponds to the fol-
lowing second text unit of file ${PROJECT HOME}/xml/file10144.txt.xml: “Persönlich
haftende Gesellschafterin: AGE Glas Vertrieb GmbH, Sitz: Garbsen.” The descriptor
“Gesellschafter” in the form of its associated non-descriptor “Gesellschafterin” occurs
in this text unit. Hence the second vector component represents a term weight greater
than zero. However, neither the descriptor term “Aktie” nor a related non-descriptor
occurs in this sentence. The first component of the second vector thus equals zero.

@relation ’DIAsDEM’

@attribute DocumentType string

@attribute Document string

@attribute TextUnit string

@attribute D1_Aktie real

@attribute D2_Gesellschafter real

...

@attribute D74_Anspruch real

@data

null,/file10144.txt.xml,1,0,1.42154,...

null,/file10144.txt.xml,2,0,3.97572,0,...

...

The text unit vector file ${PROJECT HOME}/vectors1.arff is input to the first clus-
tering iteration which is described in the next section.

Create Text Unit Vectors: Summary

Module: File → Create Text Unit Vectors

44

3 Case Study – 3.3 Iterative Clustering

Use Case: The user wants to cluster pre-processed text units of imported texts as
part of the DIAsDEM KDD process for semantic tagging of domain-
specific texts archives. Creating text unit vectors precedes the clustering
step.

Prerequisites: Each XML file must conform to the XML DTD DiasdemDocument.dtd
that is described in section 4.1 on page 75. Specifically, it must contain
the non-mandatory section <textUnitsLemmaForms> in the first cluster-
ing iteration and <textUnitsTagged> in subsequent clustering iterations,
respectively.

Remarks: Creating and exporting text unit vectors is a prerequisite for the actual
clustering phase.

Create Text Unit Vectors: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: DIAsDEMgui preference Default Collection File

Iteration: If First Clustering Iteration is enabled, text unit vectors are created for
each text unit in sections <textUnitsLemmaForms>. If Subsequent Clus-
tering Iteration is enabled, text unit vectors are created for text units
in sections <textUnitsTagged> that have not been semantically named
in a previous clustering iteration. These vectors have been assigned to
qualitatively unacceptable clusters in the previous iteration as explained
in section 1.

Vector File Format : Choice of vector file format as described in section 4.3.1 on page 85
between comma separated values (CSV file), fixed width values (TXT
file) and the Weka-specific ARFF file format; default value: DIAsDEMgui
preference Default Vector File Format

Text Unit Vectors File: Valid local file name of file to be created or replaced by DIAs-
DEM Workbench; file extension depends on choice of Vector File Format :
.csv, .txt or .arff; default value: DIAsDEMgui preference Default Text
Unit Vectors File

Thesaurus File: Valid local file name of existing DIAsDEM-specific thesaurus file as
described in section 4.3.1 on page 85; file extension: .dth; default value:
DIAsDEMgui preference Default Thesaurus File

Text Unit Descriptors : If All Descriptors in Thesaurus is enabled, all descriptor terms in
Thesaurus File are valid. If Descriptors whose Scope Note Contain String

45

3 Case Study – 3.3 Iterative Clustering

is enabled, only descriptor terms in Thesaurus File are valid whose scope
notes contain the exact string entered below. If Descriptors whose Scope
Note Don’t Contain String is enabled, only descriptor terms in Thesaurus
File are valid whose scope notes do not contain the exact string entered
below.

Term Frequency : If Raw Term Frequency is enabled, the term frequency of valid de-
scriptor d in text unit u equals the number of times d occurs in u. If
Boolean Term Frequency is enabled, the term frequency of d in u is 1 if d

occurs in u and 0 otherwise.

Term Weighting : If No Term Weighting is enabled, the term frequency of valid descrip-
tor d in text unit u is not weighted at all. If TFxIDF Term Weighting is
enabled, the term frequency of valid descriptor d in text unit u is multi-
plied by the inverse document frequency of d in the collection as defined
above.

Advanced Options : If Create File for Discovery of Term Associations is enabled, an
additional file named analogously to Text Unit Vectors File but suffixed
.assoc is created. It can be used for discovery of association rules be-
tween descriptor terms in text units. If Create Meta-Data File for Text
Unit Vectors File is enabled, an additional file named analogously to Text
Unit Vectors File but suffixed .meta is created that contains mappings of
abbreviated attribute names onto their respective unabbreviated descrip-
tors along with their term frequencies and term weights.

3.3.5 Clustering Text Unit Vectors in Iteration 1

DIAsDEM Workbench supports the export of text unit vectors into different, mostly
standardized file formats. Hence, various external clustering algorithms could be em-
ployed to group vectors based on their contents for subsequent semantic labeling. This
plug-out concept has been successfully tested in case studies employing commercial data
mining applications such as IBM Intelligent Miner for Data and SAS Enterprise Miner,
respectively [WS01c, WS02c]. Additionally, DIAsDEM Workbench implements a plug-
in concept that wraps the Java-based data mining library Weka. Along with various
data pre-processing and machine learning algorithms, Weka contains three clustering
algorithms (i.e., k-means, Cobweb and EM) that have been integrated into DIAsDEM
Workbench. The discussion of these algorithms and their parameters is beyond the
scope of this tutorial. See [WF99] for an excellent description of these algorithms, their
parameters and their implementation in the open source Weka library. For moderate
amounts of data, all three Weka algorithms should be capable of clustering text unit
vectors without memory- or runtime-related problems. However, in this case study,

46

3 Case Study – 3.3 Iterative Clustering

the simple k-means clustering algorithm will be employed only. To start the clustering
process, select File → Cluster Text Unit Vectors and enter the following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Text Unit Vectors File ${PROJECT HOME}/vectors1.arff
Clustering Algorithm weka.clusterers.SimpleKMeans

Clustering Mode Clustering Phase (Create New Clustering Model)

Clustering Parameters 1) Number of Clusters = 100

2) Acuity =

3) Cutoff =

4) Max. Iterations =

5) Random Number Seed =

6) Min. Std. Deviation =

Clustering Results File ${PARAMETER HOME}/results1.csv
Text Unit Clusterer File ${PARAMETER HOME}/clusterer1.wskm

Figure 3.16: Cluster Text Unit Vectors window of DIAsDEM Workbench 2.0

Click the OK button to start the first clustering iteration. According to the parame-
ters, the simple k-means algorithm is executed to create exactly k = 100 text unit vector

47

3 Case Study – 3.3 Iterative Clustering

clusters some of whom may of course be empty. Number of Clusters is the only param-
eter of this algorithm, whereas Acuity and Cutoff are two parameters of the Cobweb
clusterer. The EM algorithm can be parameterized by Max. Iterations, Random Number
Seed and Min. Std. Deviation. All three algorithms require text unit vector files that
conform to the Weka-specific ARFF-format. Again, see [WF99] for a detailed discussion
of these parameters. The progress of clustering cannot be displayed due to the missing
support of progress measurement in Weka. Figure 3.17 depicts an animated, so-called
indeterminate progress bar that is shown while the clustering algorithm is being exe-
cuted. Running Java 1.4.0 for Linux on a Notebook equipped with an 1.06 GHz Intel
Mobile Celeron processor and 256 MB memory, clustering of 10,711 text unit vectors
requires approx. 15 minutes.

Figure 3.17: Indeterminate progress bar of task Cluster Text Unit Vectors

DIAsDEM Workbench post-processes proprietary output generated by Weka clusterers
(e.g., ${PROJECT HOME}/results1.csv.temp). It creates clustering result files in CSV-
format that can easily be processed by File → Monitor Cluster Quality and File → Tag
Text Units, respectively. After clustering has finished, inspect the Clustering Results File
${PROJECT HOME}/results1.csv. Each line contains a file name within the collection, a
text unit identified by its sequence number (i.e., the second attribute) and an associated
cluster ID which is the third attribute. Consider for example the intermediate XML file
/file10144.txt.xml: Its first text unit is assigned to cluster 2, whereas the second one
is assigned to cluster 35. Note that cluster 2 also contains the first text unit of the file
/file11136.txt.xml.

/file10144.txt.xml,1,2

/file10144.txt.xml,2,35

/file10144.txt.xml,3,68

/file10144.txt.xml,4,77

/file10144.txt.xml,5,71

/file11136.txt.xml,1,2

As described in section 3.3.6, the contents of text units clusters can be visualized by
the module File → Monitor Cluster Quality. Note, the output file ${PROJECT HOME}
/clusterer1.wskm contains a serialized instance of the Java class weka.clusterers.

48

3 Case Study – 3.3 Iterative Clustering

SimpleKMeans. This so-called text unit clusterer can be employed to cluster text unit
vectors during the application phase of the DIAsDEM framework as explained in sec-
tion 1. In contrast to the clustering phase exemplified by this case study, Text Unit
Clusterer File is an input file during the application phase. Running DIAsDEM Work-
bench in application mode can be simulated by applying ${PROJECT HOME}/clusterer1.
wskm to the same text unit vectors in ${PROJECT HOME}/vectors1.arff using the fol-
lowing parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Text Unit Vectors File ${PROJECT HOME}/vectors1.arff
Clustering Algorithm weka.clusterers.SimpleKMeans

Clustering Mode Application Phase (Apply Existing Clustering Model)

Clustering Parameters 1) Number of Clusters =

2) Acuity =

3) Cutoff =

4) Max. Iterations =

5) Random Number Seed =

6) Min. Std. Deviation =

Clustering Results File ${PROJECT HOME}/results1.csv
Text Unit Clusterer File ${PROJECT HOME}/clusterer1.wskm

Compared to training a text unit clusterer, a significant runtime improvement can
be noticed in application mode. When applying an existing clusterer to text unit vec-
tors, the parameters of the algorithm cannot be altered due to obvious reasons. After
clustering text unit vectors, monitoring the cluster quality is the next step in this case
study (i.e., in clustering mode) as described in the next section. In contrast, cluster-
ing is directly followed by text unit tagging when DIAsDEM Workbench is running in
application mode.

Cluster Text Unit Vectors: Summary

Module: File → Cluster Text Unit Vectors

Use Case: The user wants to cluster text unit vectors of imported texts as part of
the DIAsDEM KDD process for semantic tagging of domain-specific texts
archives.

Prerequisites: Vectors to be clustered in Text Unit Vectors File must conform to the
Weka-specific ARFF file format exported by the module File → Create
Text Unit Vectors. This file format is described in section 4.3.1 on page 85.

Result: In clustering mode, text unit vectors are clustered by the selected algo-
rithm and the resulting clusterer is saved for subsequent usage in appli-
cation mode. Given an existing text unit clusterer, text units can quickly
be assigned to their respective clusters in application mode.

49

3 Case Study – 3.3 Iterative Clustering

Additionally, the DIAsDEMgui preferences Default Collection File, De-
fault Text Unit Vectors File, Default Clustering Algorithm, Default Clus-
tering Mode, Default Clustering Parameters, Default Clustering Results
File and Default Text Unit Clusterer File are set and updated, respec-
tively.

Remarks: Instead of employing the Weka-based internal clustering algorithms, any
other algorithm can also be used provided that its results can be exported
or converted into a file format supported by DIAsDEM Workbench.

Cluster Text Unit Vectors: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: DIAsDEMgui preference Default Collection File

Text Unit Vectors File: Valid local file name of existing file; file extension: .arff; default
value: DIAsDEMgui preference Default Text Unit Vectors File

Clustering Algorithm: One of three algorithms supported by the Java-based Weka li-
brary [WF99] must be selected: weka.clusterers.SimpleKMeans,weka.clus-
terers.Cobweb or weka.clusterers.EM.

Clustering Mode: If Clustering Phase (Create New Clustering Model) is enabled, a new
text unit clusterer is trained according to the parameter settings and
output as Text Unit Clusterer File. If Application Phase (Apply Existing
Clustering Model) is enabled, the existing clusterer Text Unit Clusterer
File is applied to the contents of Text Unit Vectors File.

Clustering Parameters : If Clustering Phase (Create New Clustering Model) is enabled,
the selected algorithm can be parameterized [WF99]. weka.clusterers.Sim-
pleKMeans :Number of Clusters ; weka.clusterers.Cobweb:Acuity andCut-
off ; weka.clusterers.EM :Max. Iterations, Random Number Seed andMin.
Std. Deviation.

Clustering Results File: Valid local file name of file to be created or replaced by DIAs-
DEM Workbench; file extension: .csv default value: DIAsDEMgui pref-
erence Default Clustering Results File

Text Unit Clusterer File: Valid local file name of file to be created or replaced by DIAs-
DEM Workbench, if Clustering Mode is set to Clustering Phase; valid
local file name of existing file, if Clustering Mode is set to Application
Phase; file extension: .wskm; default value: DIAsDEMgui preference De-
fault Text Unit Clusterer File

50

3 Case Study – 3.3 Iterative Clustering

3.3.6 Monitoring Cluster Quality in Iteration 1

As described in section 1, the set of text unit clusters discovered during clustering must
be analyzed to separate qualitatively “acceptable” clusters from “unacceptable” ones.
Recall that members of the former are semi-automatically assigned a semantic label,
whereas all text unit vectors assigned to qualitatively “unacceptable” clusters are re-
clustered in the next iteration. A discussion of cluster quality criteria is beyond the scope
of this tutorial. However, the applied cluster quality criteria are described in detail in
[GSW01]. In DIAsDEM Workbench, the Cluster Quality Monitor computes descriptive
statistics for clusters, visualizes cluster contents in HTML files and creates a default
cluster label file which contains default semantic labels for qualitatively “acceptable”
clusters only. Default cluster labels are composed of text unit descriptors that prevail in
the respective clusters. Start the Cluster Quality Monitor by selecting File → Monitor
Cluster Quality. Thereafter, submit the following parameters and click on OK.:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Iteration First Clustering Iteration (Text Units: Text)

Result File Format CSV: Comma Separated Values

Cluster Result File ${PROJECT HOME}/results1.csv
Cluster Result Directory ${PROJECT HOME}/iteration1
Cluster Label File ${PROJECT HOME}/labels1.dcl
Max. Cluster ID 100

Thesaurus File ${PARAMETER HOME}/thesauri/de/commercialRegister/
CommercialRegisterThesaurus.dth

Text Unit Descriptors Descriptors whose Scope Notes Contain String

Case1

Cluster Quality Criteria 1) Min. Cardinality = 50

2) Max. Distinct Ratio = 0.75

3) Min. Frequent Ratio = 0.25

Advanced Options Disabled: Ignore First Line of Cluster Result File

Enabled: Ignore Empty Clusters in Cluster Index HTML File

Enabled: Launch Web Browser with Cluster Index HTML File

Enabled: Launch Cluster Label Editor with Cluster Label File

Although available, both Iteration options First Clustering Iteration (Text Units: N-
Grams) and Subsequent Clustering Iteration (Text Units: N-Grams) are alpha features
that cannot be discussed in this tutorial. Contact Henner Graubitz (graubitz@iti.cs.uni-
magdeburg.de) for details about how to employ DIAsDEM Workbench for semantic
tagging of n-grams such as 7-words or 2-sentences. In the current version, only text
units containing regular textual contents (e.g., sentences) can be semantically annotated.
Hence, select First Clustering Iteration (Text Units: Text) in the first iteration and
Subsequent Clustering Iteration (Text Units: Text) in subsequent ones.

For obvious reasons, the settings of Thesaurus File and Text Unit Descriptors must
exactly correspond to the parameters entered in the module File → Create Text Unit

51

3 Case Study – 3.3 Iterative Clustering

Figure 3.18: Monitor Cluster Quality window of DIAsDEM Workbench 2.0

Vectors in the current clustering iteration. Max. Cluster ID must equal the greatest
integer that has been used as a cluster identifier in the current clustering run. In this
first iteration, the Weka simple k-means algorithm was parameterized to discover k = 100
clusters. In contrast to other algorithms, the greatest cluster ID equals k in this Weka
algorithm.

Please refer to [GSW01] for a detailed description of Cluster Quality Criteria. How-
ever, decreasing Min. Cardinality or Min. Frequent Ratio as well as increasing Max.
Distinct Ratio tends to result in a greater number of qualitatively “acceptable” clusters
which are automatically assigned a default label in Cluster Result File.

After monitoring cluster quality, your preferred Web browser pops up and displays the
HTML file ${PROJECT HOME}/iteration1/index.html. As illustrated in Figure 3.19,
it references all non-empty cluster files in the directory ${PROJECT HOME}/iteration1.

52

3 Case Study – 3.3 Iterative Clustering

Figure 3.19: Cluster index file created by task Monitor Cluster Quality

If the browser cannot be launched, check the current settings in the Applications tab
of the window Tools → DIAsDEMgui Preferences. Figure 3.20 depicts Cluster Label
Editor that is also launched within DIAsDEM Workbench. This editor enables you to
modify the automatically created cluster label file ${PROJECT HOME}/labels1.dcl by
both altering default cluster labels and naming clusters having no default label. How-
ever, using Cluster Label Editor to customize the file ${PROJECT HOME}/labels1.dcl
is described in section 3.3.7. Close Cluster Label Editor and the browser displaying
${PROJECT HOME}/iteration1/index.html.

Figure 3.20: Cluster Label Editor of DIAsDEM Workbench 2.0

53

3 Case Study – 3.3 Iterative Clustering

Monitor Cluster Quality: Summary

Module: File → Monitor Cluster Quality

Use Case: The user wants to separate qualitatively “acceptable” text unit vector
clusters from “unacceptable” ones after clustering as part of the DIAs-
DEM KDD process for semantic tagging of domain-specific texts archives.

Prerequisites: Clustering results in Cluster Result File must conform either to the DIAs-
DEM-specific CSV or to the DIAsDEM-specific TXT file format which
are described in section 4.3.3 on page 89.

Result: The contents of all text unit vector clusters are visualized as HTML files
in Clustering Directory. Additionally, Cluster Label File contains default
semantic labels for qualitatively “acceptable” clusters according to Cluster
Quality Criteria.

Additionally, the DIAsDEMgui preferences Default Collection File, De-
fault Result File Format, Default Cluster Result File, Default Clustering
Directory, Default Cluster Label File, Default Max. Cluster ID, Default
Thesaurus File, Default Text Unit Descriptors, Default Min. Cardinality,
Default Max. Distinct Ratio and Default Min. Frequent Ratio are set and
updated, respectively.

Remarks: This module must only be executed in the KDD phase of the DIAsDEM
framework as explained in section 1. In this phase, monitoring cluster
quality and thereby creating Cluster Label File is a prerequisite for sub-
sequently tagging text units using File → Tag Text Units. Thesaurus
File and Text Unit Descriptors must exactly correspond to the parame-
ters entered in File → Create Text Unit Vectors in the current clustering
iteration.

Monitor Cluster Quality: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: DIAsDEMgui preference Default Collection File

Iteration: First Clustering Iteration (Text Units: Text) has to be enabled in the
first iteration, whereas Subsequent Clustering Iteration (Text Units: Text)
must be enabled thereafter. Note, the options First Clustering Iteration
(Text Units: N-Grams) and Subsequent Clustering Iteration (Text Units:
N-Grams) are alpha features that should not be used without appropriate
knowledge.

54

3 Case Study – 3.3 Iterative Clustering

Result File Format : Choice of clustering result file format as described in section 4.3.3
on page 89 between comma separated values (CSV-file) and fixed width
values (TXT-file); default value: DIAsDEMgui preference Default Result
File Format

Cluster Result File: Valid local file name of existing file; file extension depends on choice
of Result File Format : .csv or .txt; default value: DIAsDEMgui prefer-
ence Default Cluster Result File

Clustering Directory : Valid local file name of existing directory or directory to be created
by DIAsDEM Workbench; Clustering Directory should be empty; default
value: DIAsDEMgui preference Default Clustering Directory

Cluster Label File: Valid local file name of file to be created or replaced by DIAsDEM
Workbench; file extension: .dcl; default value: DIAsDEMgui preference
Default Cluster Label File

Max. Cluster ID: integer greater than zero; corresponds to the greatest cluster iden-
tifier assigned by the clusterer in the current iteration; default value:
DIAsDEMgui preference Default Max. Cluster ID

Thesaurus File: Valid local file name of existing DIAsDEM-specific thesaurus file as
described in section 4.3.1 on page 85; file extension: .dth; default value:
DIAsDEMgui preference Default Thesaurus File

Text Unit Descriptors : If All Descriptors in Thesaurus is enabled, all descriptor terms in
Thesaurus File are valid. If Descriptors whose Scope Note Contain String
is enabled, only descriptor terms in Thesaurus File are valid whose scope
notes contain the exact string entered below. If Descriptors whose Scope
Note Don’t Contain String is enabled, only descriptor terms in Thesaurus
File are valid whose scope notes do not contain the exact string entered
below.

Cluster Quality Criteria: Three floating-point thresholds as described in [GSW01]; de-
fault values: DIAsDEMgui preferences Default Min. Cardinality, Default
Max. Distinct Ratio and Default Min. Frequent Ratio

Advanced Options : If the first line of Cluster Result File contains attribute names, Ig-
nore First Line of Cluster Result File must be enabled. If Ignore Empty
Clusters in Cluster Index HTML File is enabled, the index file in Clus-
tering Directory does not contain links to HTML files of empty clus-
ters. If Launch Web Browser with Cluster Index HTML File is enabled,
the browser specified in Tools → DIAsDEMgui Preferences is launched
to display the index file of Clustering Directory after monitoring cluster

55

3 Case Study – 3.3 Iterative Clustering

quality. Analogously, if Launch Cluster Label Editor with Cluster Label
File is enabled, Tools → Cluster Label Editor is launched to edit Cluster
Label File.

3.3.7 Editing Cluster Label Files in Iteration 1

After clustering text unit vectors and monitoring cluster quality, the default Cluster
Label File should be manually inspected by a domain specialist. The objective of this
task is to assign each qualitatively “acceptable” cluster an appropriate semantic label.
Semantic cluster labels should provide a concise and content-based description of the
respective text units, because they finally serve as elements of the XML document type
definition to be derived. Text units whose vectors are assigned to semantically labeled
clusters will be annotated by an XML tag that corresponds to the respective cluster
label. All remaining text unit vectors are input to the clusterer in the next iteration.

Firstly, all qualitatively “acceptable” clusters should be checked that are automati-
cally assigned a default cluster label. In this case study, default German cluster labels
are manually replaced by English labels. Moreover, certain “acceptable” clusters may
contain rather inhomogeneous text units according to the human sense of semantic sim-
ilarity. For example, two opposite semantic concepts such as “to appoint” and “to
dismiss” a managing director might be prevailing in a cluster. In these cases, default
labels must be deleted in Cluster Label File in order to enforce the re-clustering of all
corresponding text unit vectors in the next clustering iteration. Secondly, qualitatively
“unacceptable” clusters should be inspected as well, because the current cluster quality
criteria cannot capture all cases of semantic similarity. For example, a cluster might
contain text units that belong to a common semantic concept, although there are no
statistically prevailing text unit descriptors.

Select Tools→ Cluster Label Editor and open the file ${PROJECT HOME}/labels1.dcl
by clicking on Open and choosing this cluster label file. As depicted in Figure 3.19, it
contains default cluster labels assigned during the first iteration. Additionally, open the
index HTML file ${PROJECT HOME}/iteration1/index.html. For each cluster, there
exists an HTML file in the directory ${PROJECT HOME}/iteration1 which visualizes its
textual contents and provides descriptive statistics of occuring text unit descriptors.

16 qualitatively “acceptable” clusters and 36 non-empty “unacceptable” ones have
been automatically discovered by monitoring cluster quality. For example, Figures 3.21
and 3.22 illustrate the HTML file visualizing the qualitatively “acceptable” cluster 1. It
has been automatically assigned the label “DEFAULT Geschaeftsfuehrer Gesellschaft
Prokura Vertretungsmacht bestellen”. Note, this default label is the concatenation of
all prevailing text unit descriptors within cluster 1 which are highlighted in Figure 3.22.
Change the label of cluster 1 into its English equivalent “IfAppointmentOfManyManag-
ingDirectors JointPowerToRepresent” in Cluster Label Editor and click the Save but-
ton. Consider cluster 3 which is listed in the section “Qualitatively Unacceptable Clus-

56

3 Case Study – 3.3 Iterative Clustering

Figure 3.21: Top of HTML file visualizing the contents of cluster 1

Figure 3.22: Descriptor frequencies at the bottom of cluster 1 HTML file

ters” of index file ${PROJECT HOME}/iteration1/index.html. The German concept
“Tätigkeit” occurs in all members of cluster 3. Therefore, this cluster can be labeled
with its English equivalent “PurposeOfCompany” as well. Inspect the remaining clusters
and modify their respective semantic labels in Cluster Label File according to Table 3.2.
Finally, close the Web browser, save the current Cluster Label File by clicking on Save
and close Cluster Label Editor by clicking the Exit button.

57

3 Case Study – 3.3 Iterative Clustering

Cluster ID Semantic Cluster Label

1 IfAppointmentOfManyManagingDirectors JointPowerToRepresent
3 PurposeOfCompany
6 ConclusionOfPartnershipAgreement
9 IfAppointmentOfOneManagingDirector SolePowerToRepresent
14 AppointmentOfManagingDirector
22 SolePowerToRepresent PowerToContractWithOneself
32 PublicationMediaOfCommercialRegisterEntries
38 SolePowerToRepresent PowerToContractWithOneself
40 ShareCapital
48 ResolutionByShareholders ChangeOfPlaceOfDomicile
52 NameOfMerchant
62 ChangeOfFirmName
72 NumberOfLimitedPartners
78 CommencementOfPartnership
90 PowerToContractWithOneself
91 DismissalOfManagingDirector

Table 3.2: Summary of semantic cluster labels in the first iteration

3.3.8 Tagging Text Units in Iteration 1

After clustering text unit vectors (i.e., creating Cluster Result File), monitoring cluster
quality and manually editing the resulting Cluster Label File, all intermediate XML files
of Collection File have to be updated. Specifically, each text unit whose vector has
been input to the current clustering iteration should be annotated with the numerical
identifier of the cluster it has been assigned to. Additionally, members of qualitatively
“acceptable” and thus labeled clusters have to be annotated with the respective semantic
label as specified in Cluster Label File. Tagging text units is a prerequisite for exporting
text unit vectors in the next iteration as well as for tagging entire documents (i.e.,
creating semantically annotated XML documents) after the final clustering iteration.
Hence, select File → Tag Text Units and type in the following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Iteration First Clustering Iteration (Text Units: Text)

Result File Format CSV: Comma Separated Values

Cluster Result File ${PROJECT HOME}/results1.csv
Cluster Label File ${PROJECT HOME}/labels1.dcl
Advanced Options Disabled: Ignore First Line of Cluster Result File

The parameters Iteration, Result File Format and Cluster Result File have been dis-
cussed in the previous section 3.3.6 in the context of monitoring cluster quality. More-
over, Cluster Label File corresponds to the file that has been created by the module File

58

3 Case Study – 3.3 Iterative Clustering

Figure 3.23: Tag Text Units window of DIAsDEM Workbench 2.0

→ Monitor Cluster Quality. Click the OK button to tag all text units of Collection File
according to Cluster Result File and Cluster Label File. Thereafter, check the contents
of the file ${PROJECT HOME}/xml/file10780.txt.xml which has been extended by the
new section <textUnitsTagged> whose elements <textUnitTagged> mark up the same
contents as the corresponding <textUnitLemmaForms>. However, each XML tag is ex-
tended by the attributes clusterID and clusterName. The values of the former contain
a numerical cluster ID, whereas the latter attribute values either contain “-” for unla-
beled clusters or the semantic label associated with the respective cluster. However, the
current version of DIAsDEM Workbench does not save information about the iteration
in which a text unit has been assigned to a semantically labeled cluster.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE diasdemDocument SYSTEM "DiasdemDocument.dtd">

<diasdemDocument> ...

<textUnitsTagged> ...

<textUnitTagged clusterID="40" clusterName="ShareCapital">

Stammkapital : <namedEntityRef id="1001" /> .

</textUnitTagged>

<textUnitTagged clusterID="8" clusterName="-">

Gesellschaft_mit_beschränkter_Haftung_unknown .

</textUnitTagged> ...

<textUnitTagged clusterID="14" clusterName="AppointmentOfManagingDirector">

<namedEntityRef id="1019" /> , sein zur Geschäftsführerin bestellen .

</textUnitTagged> ...

<textUnitTagged clusterID="32"

clusterName="PublicationMediaOfCommercialRegisterEntries">

nicht eintragen : d Bekanntmachung d Gesellschaft erfolgen im Bundesanzeiger .

</textUnitTagged>

59

3 Case Study – 3.3 Iterative Clustering

</textUnitsTagged>

</diasdemDocument>

Consider the first text unit shown in the file excerpt shown above which corresponds to
the original sentence “Stammkapital: 50.000 DM.” Its text unit vector has been assigned
to cluster 40 that in turn has been labeled “ShareCapital”. Thus, this sentence will subse-
quently be tagged as “<ShareCapital> Stammkapital: 50.000 DM. </ShareCapital>”.
In contrast, the second text unit has been assigned to cluster 8 which remains unlabeled
after the first clustering iteration. Recall, this text unit vector will be input to the
second clustering iteration. Finally, the text unit vector corresponding to the sentence
“Marion Marcella Adolph geb. Priester, 22.03.1957, Offenbach, ist zur Geschäftsführerin
bestellt.” has been assigned to cluster 14 which has been semantically labeled “Appoint-
mentOfManagingDirector”. Note that all text unit vectors corresponding to annotated
text units will not be re-clustered in the next iteration. Once a semantic label has
been attached to a text unit, it cannot be changed anymore in the current version of
DIAsDEM Workbench.

The execution of the second clustering iteration is concisely described in section 3.3.9.
Thereafter, section 3.4.1 introduces the module File → Tag Documents which creates
the final, semantically tagged XML documents according to the results of the case study.

Tag Text Units: Summary

Module: File → Tag Text Units

Use Case: The user wants to annotate text units in intermediate XML files according
to the results of monitoring cluster quality as part of the DIAsDEM KDD
process for semantic tagging of domain-specific texts archives.

Prerequisites: Each XML file must conform to the XML DTD DiasdemDocument.dtd
that is described in section 4.1 on page 75. Specifically, it must contain
the non-mandatory section <textUnitsLemmaForms> in the first cluster-
ing iteration and <textUnitsTagged> in subsequent clustering iterations,
respectively. Moreover, clustering results in Cluster Result File must con-
form either to the DIAsDEM-specific CSV or to the DIAsDEM-specific
TXT file format which are described in section 4.3.3 on page 89.

Result: In the first clustering iteration, a new section <textUnitsTagged> is cre-
ated whose elements <textUnitTagged> mark up the same contents as
the corresponding <textUnitLemmaForms>. In subsequent iterations, the
section <textUnitsTagged> is updated. In both cases, all text units con-
tained in Cluster Result File are annotated with the respective cluster ID
and the corresponding label according to Cluster Label File.

60

3 Case Study – 3.3 Iterative Clustering

Additionally, the DIAsDEMgui preferences Default Collection File, De-
fault Result File Format, Default Cluster Result File and Default Cluster
Label File are set and updated, respectively.

Remarks: Tagging text units is a prerequisite for the next clustering iteration and
for finally executing the module File → Tag Documents. In the first
clustering iteration, any previously existing section <textUnitsTagged>
will be replaced by a new one.

Tag Text Units: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: DIAsDEMgui preference Default Collection File

Iteration: First Clustering Iteration (Text Units: Text) has to be enabled in the
first iteration, whereas Subsequent Clustering Iteration (Text Units: Text)
must be enabled thereafter. Note, the options First Clustering Iteration
(Text Units: N-Grams) and Subsequent Clustering Iteration (Text Units:
N-Grams) are alpha features that should not be used without appropriate
knowledge.

Result File Format : Choice of clustering result file format as described in section 4.3.3
on page 89 between comma separated values (CSV-file) and fixed width
values (TXT-file); default value: DIAsDEMgui preference Default Result
File Format

Cluster Result File: Valid local file name of existing file; file extension depends on choice
of Result File Format : .csv or .txt; default value: DIAsDEMgui prefer-
ence Default Cluster Result File

Cluster Label File: Valid local file name of existing file created by DIAsDEM Workbench
in File → Monitor Cluster Quality and possibly modified by Tools →
Cluster Label Editor ; file extension: .dcl; default value: DIAsDEMgui
preference Default Cluster Label File

Advanced Options : If the first line of Cluster Result File contains attribute names, Ignore
First Line of Cluster Result File must be enabled.

3.3.9 Summary of Clustering Iteration 2

All text units whose vectors have not been assigned to a qualitatively “acceptable” cluster
in the first iteration are re-clustered in iteration 2. Consequently, text unit vectors that
correspond to currently unlabeled sentences need to be exported and clustered. After

61

3 Case Study – 3.3 Iterative Clustering

monitoring cluster quality and creating a new Cluster Label File, text units have to be
tagged according to the results of the second iteration. These steps of the DIAsDEM
KDD process have been discussed in detail in sections 3.3.4 through 3.3.8. Hence, this
section only summarizes parameter settings and briefly explains particularities.

Firstly, text unit vectors that constitute the input data set to iteration 2 should be
exported. Please select File→ Create Text Unit Vectors, type in the following parameters
and click on OK.

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Iteration Subsequent Clustering Iteration

Vector File Format ARFF: Weka Data Mining Project

Text Unit Vectors File ${PROJECT HOME}/vectors2.arff
Thesaurus File ${PARAMETER HOME}/thesauri/de/commercialRegister/

CommercialRegisterThesaurus.dth

Text Unit Descriptors Descriptors whose Scope Notes Contain String

Case1

Term Frequency Boolean Term Frequency

Term Weighting TFxIDF Term Weighting

Advanced Options Disabled: Create File for Discovery of Term Associations

Enabled: Create Meta-Data File for Text Unit Vectors File

Compared to the first iteration, Text Unit Vectors File contains approx. one third
of text unit vectors. Note additionally, collection-based term weights such as inverse
document frequency are always computed on the basis of the remaining text unit vectors.
For example, compare the different term weights for iteration 1 and 2 which are listed in
the meta-data files ${PROJECT HOME}/vectors1.arff.meta and vectors2.arff.meta,
respectively. In order to cluster all exported text unit vectors, select File→ Cluster Text
Unit Vectors, enter the following parameters and click on the OK button. In contrast
to iteration 1, the maximum number of clusters to be discovered by k-means is 50.

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Text Unit Vectors File ${PROJECT HOME}/vectors2.arff
Clustering Algorithm weka.clusterers.SimpleKMeans

Clustering Mode Clustering Phase (Create New Clustering Model)

Clustering Parameters 1) Number of Clusters = 50

2) Acuity =

3) Cutoff =

4) Max. Iterations =

5) Random Number Seed =

6) Min. Std. Deviation =

Clustering Results File ${PROJECT HOME}/results2.csv
Text Unit Clusterer File ${PROJECT HOME}/clusterer2.wskm

Analogously to iteration 1, cluster text unit vectors is followed by monitoring cluster
quality according to the DIAsDEM cluster quality criteria. Hence, select File→ Monitor

62

3 Case Study – 3.3 Iterative Clustering

Cluster Quality, submit the following parameters and click on OK. Compared with the
first iteration, the cluster cardinality threshold has been decreased from 50 to 25.

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Iteration Subsequent Clustering Iteration (Text Units: Text)

Result File Format CSV: Comma Separated Values

Cluster Result File ${PROJECT HOME}/results2.csv
Cluster Result Directory ${PROJECT HOME}/iteration2
Cluster Label File ${PROJECT HOME}/labels2.dcl
Max. Cluster ID 50

Thesaurus File ${PARAMETER HOME}/thesauri/de/commercialRegister/
CommercialRegisterThesaurus.dth

Text Unit Descriptors Descriptors whose Scope Notes Contain String

Case1

Cluster Quality Criteria 1) Min. Cardinality = 25

2) Max. Distinct Ratio = 0.75

3) Min. Frequent Ratio = 0.25

Advanced Options Disabled: Ignore First Line of Cluster Result File

Enabled: Ignore Empty Clusters in Cluster Index HTML File

Enabled: Launch Web Browser with Cluster Index HTML File

Enabled: Launch Cluster Label Editor with Cluster Label File

After monitoring cluster quality, the Web browser pops up and displays the HTML
file ${PROJECT HOME}/iteration2/index.html that references all non-empty cluster
files in ${PROJECT HOME}/iteration2. Additionally, Cluster Label Editor is launched
within DIAsDEM Workbench. DIAsDEM Workbench has automatically discovered
three qualitatively “acceptable” clusters only. Please have a look at all clusters and
modify ${PROJECT HOME}/labels2.dcl in Cluster Label Editor according to Table 3.3.

After editing ${PROJECT HOME}/labels2.dcl, select File → Tag Text Units, type in
the following parameters and click the OK button to annotate text units accordingly:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Iteration Subsequent Clustering Iteration (Text Units: Text)

Result File Format CSV: Comma Separated Values

Cluster Result File ${PROJECT HOME}/results2.csv
Cluster Label File ${PROJECT HOME}/labels2.dcl
Advanced Options Disabled: Ignore First Line of Cluster Result File

Open the file ${PROJECT HOME}/xml/file10780.txt.xml and consider the original
sentence “Gesellschaft mit beschränkter Haftung.” which has not been tagged in itera-
tion 1. However, the corresponding text unit vector has been assigned to the qualitatively
“acceptable” cluster 10 in the second clustering iteration. Consequently, “Gesellschaft
mit beschränkter Haftung.” has been annotated with the semantic label “LimitedLia-
bilityCompany” of cluster 10. Note again that annotations and cluster IDs assigned in

63

3 Case Study – 3.3 Iterative Clustering

Cluster ID Semantic Cluster Label

3 JointStockCompany
9 SolePowerToRepresentCanBeGranted
10 LimitedLiabilityCompany
11 FullyLiablePartner
14 LimitedPartnership
18 PurposeOfCompany
19 FullyLiablePartner
25 PurposeOfCompany
26 ConclusionAndModificationOfPartnershipAgreement
27 PowerToRepresent ManagingBoard
34 ConfermentOfProkura
36 PurposeOfCompany
37 SolePowerToRepresent
41 AppointmentOfManagingDirector

Table 3.3: Summary of semantic cluster labels in the second iteration

the first iteration remain constant. For example, the original sentence “Stammkapital:
50.000 DM.” is still assigned to the first iteration cluster 40 labeled “ShareCapital”.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE diasdemDocument SYSTEM "DiasdemDocument.dtd">

<diasdemDocument> ...

<textUnitsTagged> ...

<textUnitTagged clusterID="40" clusterName="ShareCapital">

Stammkapital : <namedEntityRef id="1001" /> .

</textUnitTagged>

<textUnitTagged clusterID="10" clusterName="LimitedLiabilityCompany">

Gesellschaft_mit_beschränkter_Haftung_unknown .

</textUnitTagged> ...

<textUnitTagged clusterID="14" clusterName="AppointmentOfManagingDirector">

<namedEntityRef id="1019" /> , sein zur Geschäftsführerin bestellen .

</textUnitTagged> ...

<textUnitTagged clusterID="32"

clusterName="PublicationMediaOfCommercialRegisterEntries">

nicht eintragen : d Bekanntmachung d Gesellschaft erfolgen im Bundesanzeiger .

</textUnitTagged>

</textUnitsTagged>

</diasdemDocument>

In this case study, only two clustering iterations are performed in order to exemplify
the interactive and iterative DIAsDEM KDD process. When applying the DIAsDEM
KDD process to real document archives, the iterative clustering should be continued
until further qualitatively “acceptable” clusters cannot be discovered.

64

3 Case Study – 3.4 XML Tagging of Texts

3.4 XML Tagging of Texts

3.4.1 Tagging Documents

After finishing the final clustering iteration, text documents have to be converted into
an archive of semantically tagged XML documents in order to reach the objectives of
the DIAsDEM framework. To that purpose, an XML document type definition needs to
be derived firstly. It concisely describes frequently occuring, collection-specific semantic
concepts in the form of DTD elements which can be either XML tags or attributes of
XML tags. The latter correspond to named entity types whose instances exceed a relative
frequency threshold within all text units annotated with the respective tag. Secondly,
XML documents are created by assembling both tagged (i.e., text units whose vectors
have been assigned to a semantically labeled cluster) and untagged text units in the
order of their occurrence. Besides the derived XML document type definition and the
generated text unit cluster for subsequent batch processing, semantically tagged XML
documents constitute the main output of the DIAsDEM KDD process. To proceed with
the last but one task of this case study, select File → Tag Documents and enter the
following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Unstructured DTD File ${PROJECT HOME}/unstructured.dud
DTD Root Element CommercialRegisterEntry

Min. Attribute Support 0.1

Random Sample File ${PROJECT HOME}/sample5percent.dts
Random Sample Size 0.05

Text Units Text

Advanced Options Enabled: Create CSV-File Containing Tag-by-Document-Matrix

Disabled: Create Log Files for Subsequent Analysis with WUM

Enabled: Create HTML File with Random Sample of XML Documents

Note that Unstructured DTD File is a DIAsDEM-specific file that contains meta-data
about the XML DTD to be derived for internal usage. According to DTD Root Element,
the term CommercialRegisterEntrywill be the root element of the XML document type
definition. Hence, each XML document to be created will start with the same root tag as
well. Due to Min. Attribute Support, named entity type e such as “Date” only qualifies
as an attribute of XML tag t, if instances of e (e.g., “2003-03-31” and “2003-04-01”)
occur in at least 10% of all text units annotated with t. Furthermore, the module File
→ Tag Documents draws a 5% random sample of all text units in the current collection.
This sample of text units is saved in the DIAsDEM-specific Random Sample File for
subsequent evaluation of tagging quality.

The option N-Grams of parameter Text Units corresponds to an alpha feature that
cannot be discussed in this tutorial. Again, contact Henner Graubitz (graubitz@iti.cs.uni-
magdeburg.de) for details about how to employ DIAsDEM Workbench for semantic

65

3 Case Study – 3.4 XML Tagging of Texts

Figure 3.24: Tag Documents window of DIAsDEM Workbench 2.0

tagging of n-grams. In the current version of DIAsDEM Workbench, only text units
containing normal textual content can be annotated. Hence, always select the parame-
ter option Text. Click the OK button to start the semantic tagging of documents. For
each intermediate XML document in the directory ${PROJECT HOME}/xml, a new file suf-
fixed .tagged.xml is created which contains semantically annotated content of the corre-
sponding text. The XML document ${PROJECT HOME}/xml/file10780.txt.tagged.xml
is partly depicted below.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE CommercialRegisterEntry SYSTEM ’CommercialRegisterEntry.dtd’>

<CommercialRegisterEntry>

<PurposeOfCompany> Der Handel mit Waren aller Art sowie Import und Export.

</PurposeOfCompany> <PurposeOfCompany> Der Dienstleistungsbereich bezieht

sich auf Vermittlung, Beratung und Schulungen. </PurposeOfCompany>

<ShareCapital AmoutOfMoney="50000 DM"> Stammkapital: 50.000 DM. </ShareCapital>

<LimitedLiabilityCompany> Gesellschaft mit beschränkter Haftung.

</LimitedLiabilityCompany> ... <SolePowerToRepresentCanBeGranted>

Einzelvertretungsbefugnis kann erteilt werden. </SolePowerToRepresentCanBeGranted>

<AppointmentOfManagingDirector Person="1019; Adolph; Marion Marcella; null; null;

22.03.1957; Priester; Offenbach"> Marion Marcella Adolph geb. Priester, 22.03.1957,

Offenbach, ist zur Geschäftsführerin bestellt. </AppointmentOfManagingDirector>

<PowerToContractWithOneself> Sie ist befugt, Rechtsgeschäfte mit sich selbst

oder mit sich als Vertreter Dritter abzuschließen. </PowerToContractWithOneself>

<PublicationMediaOfCommercialRegisterEntries> Nicht eingetragen: Die

66

3 Case Study – 3.4 XML Tagging of Texts

Bekanntmachungen der Gesellschaft erfolgen im Bundesanzeiger.

</PublicationMediaOfCommercialRegisterEntries>

</CommercialRegisterEntry>

The current version of DIAsDEM Workbench derives an unstructured, rather pre-
liminary XML document type definition which simply enumerates valid DTD elements
(i.e., XML tags) and attributes associated with XML tags. Currently, neither the dis-
covery of nested XML tags nor the identification of frequently occuring sequences of
XML tags within annotated documents are supported by DIAsDEM Workbench. Open
the DTD file ${PROJECT HOME}/xml/CommercialRegisterEntry.dtd whose file name
always matches DTD Root Element.

In this document type definition, the listing of unordered DTD elements is followed
by definitions of all valid XML tags that can occur anywhere within textual content.
Thereafter, valid attributes of XML tags are defined as well. For example, the XML tag
AppointmentOfManagingDirector has two optional attributes Date and Person. Due
toMin. Attribute Support, instances of named entity types “Date” and “Person” occur in
at least 10% of all text units annotated with AppointmentOfManagingDirector. Note
that attributes of XML tags cannot be semantically named in the current release of
DIAsDEM Workbench.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!ELEMENT CommercialRegisterEntry (#PCDATA

| AppointmentOfManagingDirector | ChangeOfFirmName | ChangeOfPlaceOfDomicile

| CommencementOfPartnership | ConclusionAndModificationOfPartnershipAgreement

| ConclusionOfPartnershipAgreement | ConfermentOfProkura | ...

| PurposeOfCompany | ResolutionByShareholders_ChangeOfPlaceOfDomicile

| ShareCapital | ... | SolePowerToRepresent_PowerToContractWithOneself

)* >

<!ELEMENT AppointmentOfManagingDirector (#PCDATA)>

<!ELEMENT ChangeOfFirmName (#PCDATA)>

<!ELEMENT ChangeOfPlaceOfDomicile (#PCDATA)>

<!ELEMENT CommencementOfPartnership (#PCDATA)> ...

<!ELEMENT SolePowerToRepresent_PowerToContractWithOneself (#PCDATA)>

<!ATTLIST AppointmentOfManagingDirector Date CDATA #IMPLIED>

<!ATTLIST AppointmentOfManagingDirector Person CDATA #IMPLIED>

<!ATTLIST ChangeOfFirmName Company CDATA #IMPLIED>

<!ATTLIST ChangeOfPlaceOfDomicile Date CDATA #IMPLIED> ...

<!ATTLIST ShareCapital AmoutOfMoney CDATA #IMPLIED>

Consider two files that have been created due to Advanced Options. In contrast to Ran-
dom Sample File containing a random sample of text units, ${PROJECT HOME}/sample-
5percent.html references a random sample of XML documents. This HTML file is al-
ways located in the same directory as Random Sample File and is named in accordance

67

3 Case Study – 3.4 XML Tagging of Texts

with Random Sample File as well. Using a browser capable of appropriately displaying
XML files, ${PROJECT HOME}/sample5percent.html can be used to inspect a sample
of final, semantically tagged XML documents as well as the corresponding intermediate
XML files. Open the second additionally created file ${PROJECT HOME}/xml/TagByDocu-
mentMatrix.csv which is partly shown below. Each line contains a relational represen-
tation of semantic XML tags that occur in a certain text file. As shown above, the
XML tag AppointmentOfManagingDirector for example occurs in the XML file created
from source document /.../file10780.txt, whereas the tag ChangeOfFirmName does
not occur in this file. In the current version of DIAsDEM Workbench, the attribute
DocumentID always has the null value.

DocumentFileName,DocumentID,AppointmentOfManagingDirector,ChangeOfFirmName,...

/home/.../commercialRegister1/file10144.txt,null,0,0,0,1,0,0,0,0,1,0,0,0,0,...

/home/.../commercialRegister1/file11136.txt,null,0,0,0,1,0,0,0,0,1,0,0,0,0,...

/home/.../commercialRegister1/file10318.txt,null,0,0,0,1,0,0,0,0,1,0,0,0,0,...

/home/.../commercialRegister1/file10780.txt,null,1,0,0,0,1,0,0,0,0,1,1,0,1,...

Tag Documents: Summary

Module: File → Tag Documents

Use Case: The user wants to create semantically tagged XML documents from in-
termediate XML files as part of the DIAsDEM KDD process for semantic
tagging of domain-specific texts archives.

Prerequisites: Each intermediate XML file must conform to DiasdemDocument.dtd that
is described in section 4.1 on page 75. Specifically, it must contain the non-
mandatory sections <textUnits> and <textUnitsTagged>. Elements of
the latter must have been processed by the module File→ Tag Text Units
at least once.

Result: A collection-specific XML document type definition is firstly derived that
enumerates valid XML tags and their attributes. For each intermediate
XML file, a semantically annotated XML file is thereafter created and
saved in the same directory. File names of result XML files are suffixed
.tagged.xml.

Additionally, the DIAsDEMgui preferences Default Collection File, De-
fault Unstructured DTD File, Default DTD Root Element, Default Min.
Attribute Support, Default Random Sample File and Default Random
Sample Size are set and updated, respectively.

68

3 Case Study – 3.4 XML Tagging of Texts

Remarks: After tagging result documents, only one task remains to be done: The
quality of semantic tags should be evaluated using the module Tools →
Tagging Quality Evaluation.

Tag Text Units: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: DIAsDEMgui preference Default Collection File

Unstructured DTD File: Valid local file name of file to be created or replaced by DIAs-
DEM Workbench; file extension: .dud; default value: DIAsDEMgui pref-
erence Default Unstructured DTD File

DTD Root Element : ISO-8859-1 encoded string without blank spaces; default value:
DIAsDEMgui preference Default DTD Root Element

Min. Attribute Support : floating point threshold in the interval [0; 1]: named entity type
e only qualifies as attribute of XML tag t, if instances of e occur in at
least the specified portion of all text units annotated with t; default value:
DIAsDEMgui preference Default Min. Attribute Support

Random Sample File: Valid local file name of file to be created or replaced by DIAsDEM
Workbench; file extension: .dts; default value: DIAsDEMgui preference
Default Random Sample File

Random Sample Size: floating point number in the interval [0; 1] which corresponds to
the portion of text units to be randomly drawn for quality evaluation;
default value: DIAsDEMgui preference Default Random Sample Size

Text Units : option Text has to be enabled; option N-Grams corresponds to an alpha
feature that should not be used without appropriate knowledge

Advanced Options : If Create CSV-File Containing Tag-by-Document-Matrix is enabled,
a file TagByDocumentMatrix.csv is created in the collection directory
that contains a relational mapping of source file names onto discovered
XML tags. If Create Log File for Subsequent Tag Analysis with WUM is
enabled, all sequences of XML tags in result files are exported into a log
file for subsequent sequence mining and association rules discovery using
WUM: The Web Utilization Miner. If Create HTML-File with Random
Sample of XML Documents is enabled, a file named according to Random
Sample File but suffixed .html is created which references a portion of
finally tagged XML documents equal to Random Sample Size as well as
their corresponding intermediate XML files.

69

3 Case Study – 3.4 XML Tagging of Texts

3.4.2 Evaluating the Tagging Quality

Finally, the quality of semi-automatically created semantic XML mark up has to be
evaluated. Due to the absence of pre-tagged documents, a random sample of all text units
(i.e., both tagged and untagged ones) must be drawn for quality assessment. Thereafter,
a domain specialist should verify the annotations of randomly chosen text units with
respect to the following two error types:

• Error type I (false positive): A text unit is annotated with a wrong XML tag, i.e.
the tag does not properly reflect the content of the text unit.

• Error type II (false negative): A text unit is not annotated at all, although there
exists an XML tag in the derived DTD reflecting the content of the text unit.

In contrast to this quality assessment of semantic annotations, the accuracy of the
DIAsDEM Named Entity Extractor cannot be evaluated in the current release of DIAs-
DEM Workbench. However, start the quality evaluation by selecting Tools → Tagging
Quality Evaluation, clicking the Start button and choosing the following four parameter
files one after the other:

Parameter Value

Existing Text Unit Sample File ${PROJECT HOME}/sample5percent.dts
New or Existing File of
Evaluated Text Units ${PROJECT HOME}/evaluatedTextUnits.det
Text Unit Sample File to be
Created for Next Evaluation ${PROJECT HOME}/sample5percentB.dts
Existing Unstructured DTD File ${PROJECT HOME}/unstructured.dud

Both parameter files Existing Text Unit Sample File and Existing Unstructured DTD
File have been created by the module File → Tag Documents. The contents of these
files are concisely described in section 4.4.1. Evaluating tagging quality can be a lengthy
task even for rather small text units samples. Hence, DIAsDEM Workbench supports
the assessment of tagging quality in multiple sessions. In the first assessment session, a
new file New or Existing File of Evaluated Text Units is created. It contains the domain
specialist’s decision for each text unit as well as the text unit itself. After clicking the
Stop button, text units that remain to be evaluated in subsequent sessions are copied
into Text Unit Sample File to be Created for Next Evaluation. In the next evaluation
session, this file Text Unit Sample File to be Created for Next Evaluation must be chosen
as Existing Text Unit Sample File.

Figure 3.25 depicts the Tagging Quality Evaluation window after opening the Existing
Text Unit Sample File ${PROJECT HOME}/sample5percent.dts in the first assessment
session. In the left panel, the current text unit to be assessed is displayed along with
its semantic tag if present. The entire set of XML tags as contained in the derived,
collection-specific XML DTD is shown in the right panel. Note that you probably have

70

3 Case Study – 3.4 XML Tagging of Texts

Figure 3.25: Tagging Quality Evaluation window of DIAsDEM Workbench 2.0

to evaluate different sentences, since text units are randomly chosen. For obvious rea-
sons, tagged sentences can either be true positives (i.e., having a correct XML tag) or
false positives (i.e., having a false XML tag). On the other hand, text units that have not
been semantically annotated by DIAsDEM Workbench can either be true negatives (i.e.,
appropriate XML tags are not contained in DTD) or a false negatives (i.e., appropriate
XML tags are actually part of DTD). Please assess 10 text units by clicking the appro-
priate buttons True, False Pos. and False Neg., respectively. Thereafter, click on Stop
and open the file ${PROJECT HOME}/evaluatedTextUnits.det which is exemplified by
four lines shown below:

TP,TN,FP,FN,Type,TextUnit

1,0,0,0,"TP","/.../file10849.txt.xml <PublicationMediaOfCommercialRegisterEntries>

Nicht eingetragen: Die Bekanntmachungen der Gesellschaft erfolgen im

Bundesanzeiger.</PublicationMediaOfCommercialRegisterEntries>"

0,1,0,0,"TN","/.../file10421.txt.xml Die Gesellschafterversammlung vom 17. Oktober

1997 hat die Erhöhung des Stammkapitals um 50.000 DM auf 100.000 DM und die Änderung

des Gesellschaftsvertrages in § 3 (Stammkapital, Stammeinlagen) beschlossen."

1,0,0,0,"TP","/.../file10034.txt.xml <NumberOfLimitedPartners>2 Kommanditisten.

</NumberOfLimitedPartners>"

Close the Tagging Quality Evaluation window to simulate the end of the current
session. Thereafter, the second assessment session can be started by selecting again
Tools → Tagging Quality Evaluation, clicking the Start button and choosing the four
parameter files one after the other:

71

3 Case Study – 3.4 XML Tagging of Texts

Parameter Value

Existing Text Unit Sample File ${PROJECT HOME}/sample5percentB.dts
New or Existing File of
Evaluated Text Units ${PROJECT HOME}/evaluatedTextUnits.det
Text Unit Sample File to be
Created for Next Evaluation ${PROJECT HOME}/sample5percentC.dts
Existing Unstructured DTD File ${PROJECT HOME}/unstructured.dud

Figure 3.26 illustrates the Tagging Quality Evaluation window at the beginning of
the second assessment session. In the left panel, the results of all previous sessions as
contained in ${PROJECT HOME}/evaluatedTextUnits.det are displayed as well. If you
have time, you might assess the remaining 524 text units by clicking the appropriate
buttons True, False Pos. and False Neg., respectively.

The results of each assessment session are appended to ${PROJECT HOME}/evaluated-
TextUnits.det. After completing the evaluation of tagging quality, this file can be re-
named ${PROJECT HOME}/evaluatedTextUnits.csv and imported into any spreadsheet
application for detailed analysis. If you need the exact number of text units contained in
the entire collection for statistical reasons, open Existing Unstructured DTD File with
any common text editor and search the attribute value NUMBER OF TEXT UNITS.

Congratulations, you have now reached the end of this introductory case study! The
entire DIAsDEM research group is looking forward to get your feedback concerning the
DIAsDEM framework and DIAsDEM Workbench. Bug reports and feature suggestions
should be e-mailed to Karsten Winkler (kwinkler@ebusiness.hhl.de) and Henner Grau-
bitz (graubitz@iti.cs.uni-magdeburg.de). Contact Myra Spiliopoulou (myra@iti.cs.uni-
magdeburg.de), if your are interested in cooperating with the DIAsDEM group.

Figure 3.26: Tagging Quality Evaluation window of DIAsDEM Workbench 2.0

72

3 Case Study – 3.5 Auxiliary Tasks

3.5 Auxiliary Tasks

3.5.1 Create Initial Thesaurus

Before applying the DIAsDEM Workbench to a new collection of text documents, an
application-specific thesaurus has to be created. The module described in this section
establishes an initial thesaurus based on previously created word frequency statistics. All
terms whose collection-specific absolute frequency is greater than or equal to a minimum
and less than or equal to a maximum threshold are inserted into a new thesaurus as
descriptor terms. However, the resulting initial thesaurus must be manually refined by
removing less frequent or semantically unimportant terms. Moreover, the semantics
of terms and concepts should be taken into account by defining relations between less
important non-descriptors and associated descriptors of importance. Select Tools →
Create Initial Thesaurus and enter the following parameters:

Parameter Value

Word Statistics File ${PROJECT HOME}/lemmaForms.dws
Initial Thesaurus File ${PROJECT HOME}/InitialThesaurus.dth
Min. Word Frequency 30

Max. Word Frequency 4500

Figure 3.27: Create Initial Thesaurus window of DIAsDEM Workbench 2.0

Recall that the input word frequency statistics ${PROJECT HOME}/lemmaForms.dws
has been created in this case study as described in section 3.3.1. Additionally, note
that stop word removal has been skipped in this case study, because of an existing
domain-specific thesaurus. However, it is strongly recommended to remove stopwords
before creating an initial thesaurus for a new application domain. If semantically less
important stopwords are not removed, the resulting thesaurus will contain them as well.

Click on OK to start the process of creating an initial thesaurus. Thereafter, inspect
and manually refine this thesaurus by selecting Tools → Thesaurus Editor and opening

73

3 Case Study – 3.5 Auxiliary Tasks

the new thesaurus file ${PROJECT HOME}/InitialThesaurus.dth. In order to quickly
remove less important terms, thesaurus files can also be edited using any common text
editor: Simply delete all lines that correspond to terms to be removed.

Create Initial Thesaurus: Summary

Module: Tools → Create Initial Thesaurus

Use Case: The user wants to create an application-specific initial thesaurus that is
based on collection-specific term frequencies. This thesaurus must subse-
quently be manually refined using Tools → Thesaurus Editor.

Prerequisites: Using Tools→ Create Word Statistics, a collection-specific term frequency
file must have been created for the section <textUnitsLemmaForms>.

Result: Descriptors in Initial Thesaurus File correspond to terms in Word Statis-
tics File whose term frequency is greater than or equal to Min. Word
Frequency and less than or equal to Max. Word Frequency. The remain-
ing terms are not inserted into Initial Thesaurus File.

Create Initial Thesaurus: Parameters

Word Statistics File: Valid local file name of existing file; file extension: .dws; default
value: DIAsDEMgui preference Default Word Statistics File

Initial Thesaurus File: Valid local file name of file to be created or replaced by DIAs-
DEM Workbench; file extension: .dth

Min. Word Frequency : Minimum absolute term frequency of descriptors in Initial The-
saurus File

Max. Word Frequency : Maximum absolute term frequency of descriptors in Initial The-
saurus File

74

4 Technical Specification

4.1 DIAsDEM Documents

DIAsDEM Workbench processes intermediate XML files that conform to the following
XML document type definition DiasdemDocument.dtd:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- 2002-10-25, kwinkler -->

<!ELEMENT diasdemDocument (metaData*, text,

textUnits?, textUnitsTokenized?,

namedEntities?, textUnitsNamedEntities?,

textUnitsStopwords?, textUnitsLemmaForms?,

textUnitsTagged?)>

<!ELEMENT metaData (name, content)>

<!ELEMENT text (#PCDATA)>

<!ELEMENT textUnits (textUnit+)>

<!ELEMENT textUnitsTokenized (textUnitTokenized+)>

<!ELEMENT namedEntities (namedEntity+)>

<!ELEMENT textUnitsNamedEntities (textUnitNamedEntities+)>

<!ELEMENT textUnitsStopwords (textUnitStopwords+)>

<!ELEMENT textUnitsLemmaForms (textUnitLemmaForms+)>

<!ELEMENT textUnitsTagged (textUnitTagged+)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT content (#PCDATA)>

<!ELEMENT textUnit (#PCDATA)>

<!ELEMENT textUnitTokenized (#PCDATA)>

<!ELEMENT namedEntity (#PCDATA)>

<!ELEMENT textUnitNamedEntities (#PCDATA | namedEntityRef)*>

<!ELEMENT textUnitStopwords (#PCDATA | namedEntityRef)*>

<!ELEMENT textUnitLemmaForms (#PCDATA | namedEntityRef)*>

<!ELEMENT textUnitTagged (#PCDATA | namedEntityRef)*>

<!ELEMENT namedEntityRef EMPTY>

<!ATTLIST namedEntity id CDATA #IMPLIED type CDATA #IMPLIED>

<!ATTLIST namedEntityRef id CDATA #IMPLIED>

<!ATTLIST textUnitTagged clusterID CDATA #IMPLIED clusterName CDATA #IMPLIED>

4 Technical Specification – 4.2 Text Pre-Processing

4.2 Text Pre-Processing

4.2.1 Module: Create Text Units

Abbreviations File: Valid local file name of existing text file that contains known abbre-
viations in the following format: Each line of Abbreviations File contains exactly one
known abbreviation whose capitalization is relevant. The module only matches abbre-
viations that either occur at the beginning of the text or that are preceded by one of
the following characters: blank space, opening parenthesis “(”. Comment lines starting
with “#” will be ignored and can hence be used to structure the file. Example:

Abb.

Abess.

abgeschl.

abgeschloss.

abgest.

Abl.

Ablief.-Gew.

Note the different capitalization of the following abbreviations:

a.d.

a. d.

a.D.

Full Stop Regex File: Valid local file name of existing text file that contains regular
expressions in the following format: Each line of Full Stop Regex File contains a regular
expression matching full stops, exactly one tab stop and thereafter a corresponding
replacement string that substitutes each matched full stop with an asterisk. Therefore,
the replacement string usually contains references such as $1 to captured subsequences
like (ges|Ges) of the corresponding regular expression. Both the regular expression
and the replacement string must be Java-compliant constructs as specified in the API
documentation of the Java package java.util.regex. Comment lines starting with
“#” will be ignored and can hence be used to structure the file. Example:

dates

([0-9]{1,2})\.([\]*[0-9]{1,2})\.([\]*[0-9]{2,4}) $1*$2*$3

([0-9]{1,2})\.([\]*[0-9]{1,2})\.([\]*) $1*$2*$3

abbreviations that are not preceded by blank space

(str|Str|pl|Pl)\.([\]*\d*) $1*$2

(ges|Ges)\.([\]*mbH) $1*$2

complex and context-sensitive abbreviations

(Dipl)*([\]*|[\]*\-[\]*)([a-zöäüßA-ZÖÄÜ]+)\. $1*$2*$3*

(Art)\.\ (\d) $1*\ $2

numbers

(\s*[0-9]+)\.(\s*[0-9]+)\.(\s*[0-9]+)\.(\s*[0-9]+) $1*$2*$3*$4

(\s*[0-9]+)\.(\s*[0-9]+)\.(\s*[0-9]+) $1*$2*$3

76

4 Technical Specification – 4.2 Text Pre-Processing

(\s*[0-9]+)\.(\s*[0-9]+) $1*$2

(\s*[0-9]{1,3})\.(\s) $1*$2

Default files of both Abbreviations File and Full Stop Regex File are provided in the
language-specific subdirectories of ${PARAMETER HOME}/createTextUnits/.

4.2.2 Module: Tokenize Text Units

Tokenize Regex File: Valid local file name of existing text file that contains regular
expressions in the following format: Each line of Tokenize Regex File contains a regular
expression matching full stops, exactly one tab stop and thereafter a corresponding
replacement string that substitutes each matched full stop with an asterisk. Therefore,
the replacement string usually contains references such as $1 to captured subsequences of
the corresponding regular expression. Both the regular expression and the replacement
string must be Java-compliant constructs as specified in the API documentation of the
Java package java.util.regex. Comment lines starting with “#” will be ignored and
can hence be used to structure the file. Example:

Format: searchRegex<TAB>replaceString

#

(\S)(\.|\!|\?|\(|\)|\{|\}|\[|\]|\-|"|’|‘|’|:|;|,|\+|\/|\\) $1\ $2

(\.|\!|\?|\(|\)|\{|\}|\[|\]|\-|"|’|‘|’|:|;|,|\+|\/|\\)(\S) $1\ $2

Normalize Regex File: Valid local file name of existing text file that contains regular
expressions in the same format as Tokenize Regex File described above. Example:

Format: searchRegex<TAB>replaceString

#

dates

#

([0-9]{1,2})\.[\]*(Januar|Jan[\.]?)[\]*([\d]{2,4}) $1.01.$3

([0-9]{1,2})\.[\]*(Februar|Feb[r]?[\.]?)[\]*([\d]{2,4}) $1.02.$3

([0-9]{1,2})\.[\]*(März|M[ä]?r[z]?[\.]?)[\]*([\d]{2,4}) $1.03.$3

([0-9]{1,2})\.[\]*(April|Apr[\.]?)[\]*([\d]{2,4}) $1.04.$3

([0-9]{1,2})\.[\]*(Mai)[\]*([\d]{2,4}) $1.05.$3

([0-9]{1,2})\.[\]*(Juni|Jun[\.]?)[\]*([\d]{2,4}) $1.06.$3

([0-9]{1,2})\.[\]*(Juli|Jul[\.]?)[\]*([\d]{2,4}) $1.07.$3

([0-9]{1,2})\.[\]*(August|Aug[\.]?)[\]*([\d]{2,4}) $1.08.$3

([0-9]{1,2})\.[\]*(September|Sep[t]?[\.]?)[\]*([\d]{2,4}) $1.09.$3

([0-9]{1,2})\.[\]*(Oktober|Okt[\.]?)[\]*([\d]{2,4}) $1.10.$3

([0-9]{1,2})\.[\]*(November|Nov[\.]?)[\]*([\d]{2,4}) $1.11.$3

([0-9]{1,2})\.[\]*(Dezember|Dez[\.]?)[\]*([\d]{2,4}) $1.12.$3

([\])([0-9]{1})\.[\]*([0-9]{1,2})\.[\]*([\d]{2,4}) $10$2.$3.$4

([\][0-9]{1,2})\.[\]*([0-9]{1})\.[\]*([\d]{2,4}) $1.0$2.$3

77

4 Technical Specification – 4.2 Text Pre-Processing

Multi Token Words File: Valid local file name of existing text file that contains known
multi-token terms in the following format: Each line of Multi Token Words File contains
exactly one known multi-token word whose capitalization is relevant. Multi-token terms
consist of multiple single tokens and blank spaces. Comment lines starting with “#”
will be ignored and can hence be used to structure the file. Example:

#

Each line contains exactly on multi-token term.

#

Gesellschaft mit beschränkter Haftung

Offene Handelsgesellschaft

The language-specific subdirectories of ${PARAMETER HOME}/tokenizeTextUnits con-
tain defaults for Tokenize Regex File, Normalize Regex File and Multi Token Words File.

4.2.3 Module: Replace Named Entities

Forenames File: Valid local file name of existing file that contains a list of forenames
in the following format: Each line contains exactly one forename whose capitalization is
relevant. Currently, forenames must not be multi-token terms that include blank spaces.
However, forenames consisting of multiple tokens separated by either a blank space (e.g.,
“Hans Joachim”) or a hyphen (e.g., “Hans-Joachim”) can be identified by user-specific
rules in Composite NE File. Comment lines starting with “#” will be ignored. Example:

A few frequent forenames ...

Stanka

Cevdet

Wolfgang

Vid

Joaquin

Surnames File: Valid local file name of existing file that contains a list of surnames
in the following format: Each line contains exactly one surname whose capitalization is
relevant. Currently, surnames must not be multi-token terms that include blank spaces.
However, surnames consisting of multiple tokens separated by a hyphen (e.g., “Müller-
Schmidt”) can be identified by user-specific rules in Composite NE File. Comment lines
starting with “#” will be ignored. Example:

A few frequent surnames ...

Meier

Müller

Schulze

Schmidt

Schmitt

78

4 Technical Specification – 4.2 Text Pre-Processing

Surname Suffixes File: Valid local file name of existing file that contains a list of
frequent surname suffixes in the following format: Each line contains exactly one surname
suffix whose capitalization is relevant. Only tokens that are preceded by an instance of
named entity types “forename” or “middle initial” are checked against the list of surname
suffixes. Comment lines starting with “#” will be ignored. Example:

A few frequent surname suffixes ...

wig

witz

wski

wsky

yer

Middle Initials File: Valid local file name of existing file that contains a list of middle
initials in the following format: Each line contains exactly one middle initial whose
capitalization is relevant. Only tokens that are preceded by an instance of named entity
type “forename” are checked against the list of middle initials. Currently, middle initials
must not be multi-token terms that include blank spaces. Comment lines starting with
“#” will be ignored. Example:

A few middle initials ...

A.

B.

von

De

de

Titles File: Valid local file name of existing file that contains a list of academic and
professional titles in the following format: Each line contains exactly one title whose
capitalization is relevant. Currently, titles must not be multi-token terms that include
blank spaces. However, multiple subsequent titles can be merged by user-specific rules
in Composite NE File. Comment lines starting with “#” will be ignored. Example:

A few titles ...

Prof.

Dr.

Steuerberaterin

Diplom-Bauingenieur

Ing.

79

4 Technical Specification – 4.2 Text Pre-Processing

Places File: Valid local file name of existing file that contains a list of places (i.e.,
cities) in the following format: Each line contains exactly one place whose capitalization
is relevant. Currently, places must not be multi-token terms that include blank spaces.
However, multiple subsequent places can be merged by user-specific rules in Composite
NE File. Comment lines starting with “#” will be ignored. Example:

A few famous places in Germany ...

Berlin

Hamburg

München

Neualbenreuth

Oebles-Schlechtewitz

Organizations Start File: Valid local file name of existing file that contains sequences
of terms frequently preceding names of organizations as comma-separated values in a
format defined by the Java class diasdem.misc.io.CsvFile. Except for the first two
meta-data lines, each line contains exactly one string attribute value. This attribute
value is a sequence of terms that frequently precede organizations in reverse order. Note
that tokens must be separated from each others by blank spaces, because named entities
are identified in tokenized text units. Comment lines starting with “#” will be ignored.
Example:

attribute1

String

Example: Gesellschafterin : <organization>ABC Gmbh</organization>

": Gesellschafterin"

"der"

"die"

"gründenden zu"

":"

Organizations End File: Valid local file name of existing file that contains a list of ab-
breviations for organizations in the following format: Each line contains exactly one ab-
breviation whose capitalization is relevant. Currently, abbreviations must not be multi-
token terms that include blank spaces. However, NEEX aims at identifying complex
abbreviations that consist of multiple elementary abbreviations listed in Organizations
End File. Comment lines starting with “#” will be ignored. Example:

A few common abbreviations of organizations ...

AG

aA

e.G.

80

4 Technical Specification – 4.2 Text Pre-Processing

KG.

GmbH

OHG

Composite NE File: Valid local file name of existing file that contains rules for instan-
tiating composite named entities as comma-separated values in a format defined by the
Java class diasdem.misc.io.CsvFile. Except for the first two meta-data lines, each
line contains exactly two string attribute values.

The first attribute value is a simple, DIAsDEM-specific regular expression that must
be matched by a tokenized text unit in order to instantiate a composite named entity, i.e.,
“person” or “company”. This expression can include case-sensitive tokens (e.g., “mit”,
“Sitz”) and generic placeholders for basic named entities (e.g., “<<organization>>”,
“<<surname>>”) as defined in the Java class diasdem.neex.NamedEntity. The second
attribute value contains the corresponding named entity constructor that either creates
a “person” or a “company”. Each constructor references terms and generic placeholders
of its corresponding regular expression that are attribute values of the new composite
named entity (e.g., “person”). Note that tokens in both expressions must be separated
from each others by blank spaces, because named entities are identified in tokenized text
units. Composite NE File must not contain empty lines. Comment lines starting with
“#” will be ignored.

Note: Users only edit or create csv-files containing so-called initial composite named
entity rules. Thereafter, the DIAsDEM Workbench module Tools → Extend Composite
NE File should be employed to extend these initial rules by applying a heuristic permu-
tation algorithm that automatically extends user-supplied initial rules and thus creates
the final Composite NE File. Extended composite named entity rules cater for the fact
that many tokens can be instances of multiple basic named entities. Thus, additional
rules are created by extending plain instances of the basic named entities “place”, “fore-
name” and “surname” with possible combinations of them. For example, the initial rule
“<<organization>> mit Sitz in <<place>>” contains the generic basic named entity
placeholder “<<place>>”. Therefore, three additional extended rules are generated
and added to Composite NE File that substitute “<<place>>” with placeholders for
the following combinations of named entity types: “<<place forename>>”, “<<place
surname>>” and “<<place forename surname>>”.

The following example depicts a comma-separated values file containing initial com-
posite named entity rules as defined by the user:

Attribute0;Attribute1

String;String

company(Name , Place)

"<<organization>>";"company(0 , null)"

"<<organization>> mit Sitz in <<place>>";"company(0 , 4)"

81

4 Technical Specification – 4.2 Text Pre-Processing

"<<organization>> Sitz , <<place>> <<place>> ";"company(0 , 3 4)"

"<<organization>> Sitz , <<place>> / <<place>> ";"company(0 , 3 \"/\" 5)"

person(Surname , Forename , Title , MiddleInitial , DoB , MothersName , Place)

"<<forename>> <<surname>>";"person(1 , 0 , null , null , null , null , null)"

"<<title>> <<surname>> - <<surname>>";"person(1 \"-\" 3 , null , 0 , null , ...)"

Below, an excerpt of Composite NE File contains automatically extended composite
named entity rules that correspond to the first two initial rules shown above:

Attribute0;Attribute1

String;String

"<<organization>>";"company(0 , null)"

"<<organization>> mit Sitz in <<place>>";"company(0 , 4)"

"<<organization>> mit Sitz in <<place forename>>";"company(0 , 4)"

"<<organization>> mit Sitz in <<place surname>>";"company(0 , 4)"

"<<organization>> mit Sitz in <<place forename surname>>";"company(0 , 4)"

The DIAsDEM Workbench module Tools → Extend Composite NE File can be em-
ployed to automatically create Composite NE File after editing a CSV-file containing
domain-specific initial composite named entity rules. Note that the file corresponding
to the parameter Basic NE File must not be edited. After modifying Initial Composite
NE File, type in the following parameters to create Extended Composite NE File which
is commonly referred to as Composite NE File:

Parameter Value

Basic NE File ${PARAMETER HOME}/replaceNamedEntities/de/
default/BasicNE.csv

Initial Composite NE File ${PARAMETER HOME}/replaceNamedEntities/de/
commercialRegister/

CommercialRegisterInitialCompositeNE.csv

Extended Composite NE File ${PARAMETER HOME}/replaceNamedEntities/de/
commercialRegister/

CommercialRegisterExtentedCompositeNE Modified.csv

Regex NE File: Valid local file name of existing file that contains regular expressions
for the identification of basic named entities as comma-separated values in a format
defined by the Java class diasdem.misc.io.CsvFile. Except for the first two meta-
data lines, each line of Regex NE File contains two attribute values: The first attribute
value is a regular expression matching an instance of the following basic named entities:
“number”, “date”, “time”, “amount of money”, “paragraph”, “email” and “url”. The
second attribute value contains the corresponding named entity type as defined by the
Java class diasdem.neex.NamedEntity.

Regular expressions must be Java-compliant constructs as specified in the API docu-
mentation of the Java package gnu.regexp. Comment lines starting with “#” will be
ignored and can hence be used to structure the file. Example:

82

4 Technical Specification – 4.2 Text Pre-Processing

Figure 4.1: Extend Composite NE File window of DIAsDEM Workbench 2.0

RegularExpression;BasicNamedEntityType

String;String

"\d{1,}[,.\d]{1,}\sDM";amount_of_money

"\d{1,}[,.\d]{1,}\sEUR";amount_of_money

"\d\d.\d\d.\d\d\d\d";date

"\§\s\d+[\s\d\w\.]*BGB";paragraph
"\§\§\s[\d\W]*\s";paragraph

The language-specific subdirectories of ${PARAMETER HOME}/replaceNamedEntities
contain defaults for all parameter files described above.

4.2.4 Module: Remove Stopwords

Stopword File: Valid local file name of existing text file that contains stopwords in the
following format: Each line lists exactly one stopword whose capitalization is irrelevant.
Stopwords must not be multi-token terms that include blank spaces. Comment lines
starting with “#” will be ignored and can hence be used to structure the file. Example:

Each line contains exactly one stopword.

dem

den

denen

denn

der

Defaults for Stopword File are provided in the language-specific subdirectories of the
directory ${PARAMETER HOME}/removeStopwords.

4.2.5 Module: Create Lemma Forms

TreeTagger Input File: The name of this temporary file must be set, if Use TreeTagger
to Determine Lemma Form is enabled. It must be a valid local file name of either a new

83

4 Technical Specification – 4.2 Text Pre-Processing

or an existing file that will be replaced by the module. This file is created by DIAsDEM
Workbench and includes text to be POS-tagged by TreeTagger. Example:

<document_/home/kwinkler/diasdem/DIAsDEM.cases/tutorial/xml/file10144.txt.xml>

<textUnitLemmaForms_0>

(Gegenstand : Einzelhandel nebst Montage von Fahrzeugscheiben sowie deren Reparatur) .

</textUnitLemmaForms_0>

<textUnitLemmaForms_1>

Persönlich haftende Gesellschafterin : <<1004>> .

</textUnitLemmaForms_1>

<textUnitLemmaForms_2>

Kommanditgesellschaft .

</textUnitLemmaForms_2>

<textUnitLemmaForms_3>

Die Gesellschaft hat am <<1003>> begonnen .

</textUnitLemmaForms_3>

<textUnitLemmaForms_4>

1 Kommanditist .

</textUnitLemmaForms_4>

</document_/home/kwinkler/diasdem/DIAsDEM.cases/tutorial/xml/file10144.txt.xml> ...

TreeTagger Output File: The name of this temporary file must be set, ifUse TreeTagger
to Determine Lemma Form is enabled. It must be a valid local file name of either a
new or an existing file that will be extended by the module. This file is created by
TreeTagger and includes the results of POS-tagging for subsequent parsing the DIAs-
DEM Workbench. Example:

<document_/home/kwinkler/diasdem/DIAsDEM.cases/tutorial/xml/file10144.txt.xml>

<textUnitLemmaForms_0>

($((

Gegenstand NN Gegenstand

: $. :

Einzelhandel NN Einzelhandel

nebst APPR nebst

Montage NN Montag|Montage

von APPR von

Fahrzeugscheiben NN <unknown>

sowie KON sowie

deren PRELAT d

Reparatur NN Reparatur

) $()

. $. .

</textUnitLemmaForms_0>

<textUnitLemmaForms_1> ...

84

4 Technical Specification – 4.3 Iterative Clustering

Known Lemma Forms : The name of this parameter file must be set, if Look Up Lemma
Form in List is enabled. It must be a valid local file name of an existing file that contains
terms along with their lemma forms in the following format: The first line contains the
attribute names separated by a single tab stop. Thereafter, each line lists one term,
exactly one tab stop and thereafter the corresponding grammatical root form. Terms
and lemma forms must not be multi-token terms that include blank spaces. However,
blank spaces in multi-token terms can be replaced with underscores (e.g., “for example”).
Note that capitalization of terms is irrelevant, but the capitalization of lemma forms is
retained when replacing the corresponding terms. Comment lines starting with “#” will
be ignored and can hence be used to structure the file. Example:

TERM LemmaTerm

Each line contains a term, a tab stop and the lemma form.

jetzt jetzt

Investitionsgütern Investitionsgut

dem d

mobilen mobil

Gesellschaft_mit_beschränkter_Haftung Gesellschaft_mit_beschränkter_Haftung_unknown

Anlegen anlegen

Rödelheim Rödelheim_NE

Unknown Lemma Forms : The name of this temporary file must be set, if Look Up
Lemma Form in List is enabled. It must be a valid local file name of either a new or
an existing file that will be extended by the module. This file is created or extended by
DIAsDEM Workbench and includes terms occuring in the collection that are not listed
in the file of Known Lemma Forms as well as the context of their occurrence (i.e., the
sentence) separated by exactly one tab stop. This file could be used to update the file
Known Lemma Forms with new terms. Example:

.Kaufm. Dipl. - .Kaufm. <<1099>> , <<1064>> , ist zum Geschäftsführern bestellt .

.Wirt. <<1031>> , Speditionskaufmann , <<1005>> ; <<1032>> , Dipl. <<1008>> ...

Art. Der Gesellschaftsvertrag ist am <<1001>> abgeschlossen und am <<1002>> ...

Dip. Dip. - Ing .

lit. 1. Der An - und Verkauf von Immobilien sowie die Beteiligung an ...

4.3 Iterative Clustering

4.3.1 Module: Create Text Unit Vectors

Vector File Format : DIAsDEM Workbench supports the export of three file formats:
comma separated values (CSV-files), fixed width values (TXT-files) and ARFF-files in
the Weka-specific format described in [WF99]. See below an example of a text unit
vector file in comma separated values format:

85

4 Technical Specification – 4.3 Iterative Clustering

DocumentType,Document,TextUnit,D1_Aktie,D2_Gesellschafter,D3_Inhaber,...,D74_Anspruch

"null","/file10144.txt.xml",1,0,1.42154,0,...

"null","/file10144.txt.xml",2,0,3.97572,0,...

"null","/file10144.txt.xml",3,0,...

"null","/file10144.txt.xml",4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4.32319,0,0,0,0,0,0,0,...

In the current version of DIAsDEM Workbench, “DocumentType” is always “null”
due to legacy reasons. The attribute “Document” contains file names of intermediate
XML files relative to the collection directory that corresponds to the case-specific Col-
lection File. Currently, all collection files must reside in the same directory. Values of
the attribute “TextUnit” uniquely identify text units within a given document by their
sequence number. Note that “Document” and “TextUnit” constitute a composite pri-
mary key for text units in the scope of the corresponding Collection File. The following
meta-data file summarize information about all attributes of the CSV-file above:

DocumentType

Document

TextUnit

D1_Aktie = Aktie; Term Frequency = 38; Term Weight = 5.64144

D2_Gesellschafter = Gesellschafter; Term Frequency = 201; Term Weight = 3.97572

...

D74_Anspruch = Anspruch; Term Frequency = 9; Term Weight = 7.08180

Below is an example of a text unit vector file in fixed width values format:

DocumentType\\\\\\\\Document\\\\\\\\\\\\\\\\\TextUnit\\D1_Aktie\\\\\\\\\\\\D2_Gese...

null\\\\\\\\\\\\\\\\/file10144.txt.xml\\\\\\\1\\\\\\\\\0\\\\\\\\\\\\\\\\\\\0\\\\\\...

null\\\\\\\\\\\\\\\\/file10144.txt.xml\\\\\\\2\\\\\\\\\0\\\\\\\\\\\\\\\\\\\3.97572...

null\\\\\\\\\\\\\\\\/file10144.txt.xml\\\\\\\3\\\\\\\\\0\\\\\\\\\\\\\\\\\\\0\\\\\\...

null\\\\\\\\\\\\\\\\/file10144.txt.xml\\\\\\\4\\\\\\\\\0\\\\\\\\\\\\\\\\\\\0\\\\\\...

As indicated above, simple blank spaces separate attribute values from each others.
The following meta-data file corresponds to the TXT-file above and additionally contains
information about the width of each attribute. Note that file names of intermediate XML
files cannot exceed 25 characters. Currently, the width of attributes cannot be changed
by the user.

1-20 DocumentType

21-45 Document

46-55 TextUnit

56-75 D1_Aktie = Aktie; Term Frequency = 38; Term Weight = 5.64144

76-95 D2_Gesellschafter = Gesellschafter; Term Frequency = 201; Term Weight = 3.9...

...

1516-1535 D74_Anspruch = Anspruch; Term Frequency = 9; Term Weight = 7.08180

86

4 Technical Specification – 4.3 Iterative Clustering

See below an example of a Weka-specific text unit vector file in ARFF-format:

@relation ’DIAsDEM’

@attribute DocumentType string

@attribute Document string

@attribute TextUnit string

@attribute D1_Aktie real

@attribute D2_Gesellschafter real

...

@attribute D74_Anspruch real

@data

null,/file10144.txt.xml,1,0,1.42154,...

null,/file10144.txt.xml,2,0,3.97572,0,...

...

The following meta-data file corresponds to the ARFF-file above:

DocumentType

Document

TextUnit

D1_Aktie = Aktie; Term Frequency = 38; Term Weight = 5.64144

D2_Gesellschafter = Gesellschafter; Term Frequency = 201; Term Weight = 3.97572

...

D74_Anspruch = Anspruch; Term Frequency = 9; Term Weight = 7.08180

Thesaurus File: The existing DIAsDEM-specific thesaurus file must be identified by a
valid local file name. Except for comment lines starting with “#”, each line corresponds
to exactly one thesaurus entry that can either be a descriptor (i.e., preferred term) or
a non-descriptor (i.e., non-preferred term). Non-descriptor terms must always point to
an associated descriptor in the same thesaurus file that should be used for indexing
and term frequency counting instead. Note that DIAsDEM-specific thesauri must only
include grammatical root forms of terms (i.e., their so-called lemma forms) as determined
by the module File→ Create Lemma Forms. Thesauri can be created by Tools→ Create
Initial Thesaurus and modified by Tools → Thesaurus Editor. Example:

Terms of Thesaurus /.../thesauri/de/commercialRegister/CommercialRegisterThesaurus.dth

19535 "<<company>>" 1 "TY=D" "HL=-" "SY=-" "BT=-" "NT=-" "UD=-" "SN=Case1" ...

19461 "Ablehnung" 1 "TY=D" "HL=-" "SY=-" "BT=-" "NT=-" "UD=-" "SN=Case2"

10628 "abschließen" 1830 "TY=D" "HL=-" "SY=-" "BT=-" "NT=-" "UD=-" "SN=Case1 Case2" ...

12299 "Änderung" 24 "TY=D" "HL=-" "SY=-" "BT=-" "NT=-" "UD=-" "SN=Case1 Case2" ...

12087 "Zweck" 16 "TY=N" "HL=-" "SY=-" "BT=-" "NT=-" "UD=Tätigkeit" "SN=-"

10859 "Zwecke_|" 10 "TY=N" "HL=-" "SY=-" "BT=-" "NT=-" "UD=Tätigkeit" "SN=-"

10797 "ändern" 396 "TY=N" "HL=-" "SY=-" "BT=-" "NT=-" "UD=Änderung" "SN=-"

87

4 Technical Specification – 4.3 Iterative Clustering

Thesaurus terms can either be lemma forms of words (e.g., “Ablehnung” and “ändern”)
or named entity type placeholders such as “<<company>>” and “<<person>>”. Con-
sider for example the thesaurus entry “Ablehnung”: “19461” is a unique term identifier
within the thesaurus, the term type field “TY=D” denotes that “Ablehnung” is a de-
scriptor term and the scope notes field “SN=Case2” can be used to filter valid descriptors
in different case studies and clustering iterations, respectively. The use descriptor field
(“UD=-”) remains empty for descriptor terms for obvious reasons. Furthermore, con-
sider the thesaurus entry “ändern” which is a non-descriptor (“TY=N”). The descriptor
term “Änderung” should be used instead of “ändern”, because of the use descriptor field
“UD=Tätigkeit”. Note that hierarchy level (“HL=-”), synonyms (“SY=-”), broader
term (“BT=-”) and narrower term (“NT=-”) are neither used for descriptor nor non-
descriptors in the current version of DIAsDEM Workbench.

4.3.2 Module: Cluster Text Unit Vectors

Text Unit Vectors File: Valid local file name containing text unit vectors to be clustered
in ARFF format as specified above in section 4.3.1. Note that the internal Weka-based
clustering algorithms cannot process other file formats.
Clustering Results File: Valid local file name of a file to be created or replaced by

DIAsDEM Workbench that contains the mappings of text units onto clusters in CSV
format as specified below in section 4.3.3. Note that all internal Weka-based clustering
algorithms cannot output other file formats.
Text Unit Clusterer File: Valid local file name of a file to be created or replaced by

DIAsDEM Workbenchthat contains a serialized instance of the Java class corresponding
to Clustering Algorithm. Text Unit Clusterer File is an output parameter in clustering
mode, but an input parameter in application mode. Note, there must be a correspon-
dance between the specified Clustering Algorithm in clustering and application mode.
In the latter phase, an instance of the respective text unit clusterer is created as follows:

ObjectInputStream modelInputStream = new ObjectInputStream(new FileInputStream(

Parameter.getClusterModelFileName()));

switch (Parameter.getClusteringAlgorithm()) {

case ClusterTextUnitVectorsParameter.WEKA_SIMPLE_KMEANS: {

clusterer = (SimpleKMeans)modelInputStream.readObject();

break;

}

case ClusterTextUnitVectorsParameter.WEKA_COBWEB: {

clusterer = (Cobweb)modelInputStream.readObject();

break;

}

case ClusterTextUnitVectorsParameter.WEKA_EM: {

clusterer = (EM)modelInputStream.readObject();

break;

}

88

4 Technical Specification – 4.3 Iterative Clustering

}

modelInputStream.close();

4.3.3 Module: Monitor Cluster Quality

Result File Format : Cluster Result File maps text unit vectors onto their respective
clusters which are identified by integers. Currently, each text unit vector can only
be assigned to exactly one cluster. DIAsDEM Workbench can import result files in
the following two formats: comma separated values (CSV-files) and fixed width values
(TXT-files). In both cases, Cluster Result File must contain exactly three attributes
for each text unit vector. The file name within the current collection (i.e., Collection
File) is the first attribute. It is followed by the text unit identifier as the second and
the cluster ID associated with the respective text unit vector as the third attribute. The
first two attributes (i.e., file name and text unit identifier) correspond to the attributes
“Document” and “TextUnit” of text unit vector files as described in section 4.3.1. Valid
cluster IDs are integers being greater than zero. Text units vectors in Cluster Result
File should be ordered as in the corresponding Text Unit Vectors File.

Note, DIAsDEM Workbench can only process files that completely conform to the
syntax exemplified by the following two file excerpts. Hence, clustering algorithms must
either be configured to create appropriate result files or intermediate output files must
be post-processed by for example Perl scripts. See below an example of a cluster result
file in comma separated values format:

/file10144.txt.xml,1,2

/file10144.txt.xml,2,35

/file10144.txt.xml,3,68

/file10144.txt.xml,4,77

/file10144.txt.xml,5,71

/file11136.txt.xml,1,2

Below is an example of a text unit vector file in fixed width values format:

null\\\\\\\\\\\\\\\\/file10144.txt.xml\\\\\\\1\\\\\\\\\2

null\\\\\\\\\\\\\\\\/file10144.txt.xml\\\\\\\2\\\\\\\\\35

null\\\\\\\\\\\\\\\\/file10144.txt.xml\\\\\\\3\\\\\\\\\68

null\\\\\\\\\\\\\\\\/file10144.txt.xml\\\\\\\4\\\\\\\\\77

null\\\\\\\\\\\\\\\\/file10144.txt.xml\\\\\\\5\\\\\\\\\71

null\\\\\\\\\\\\\\\\/file11136.txt.xml\\\\\\\1\\\\\\\\\2

As indicated above, only blank spaces are allowed to separate attribute values from
each others. The following meta-data file corresponds to the TXT-file above and contains

89

4 Technical Specification – 4.4 XML Tagging of Texts

information about the width of each attribute. Note that file names of intermediate XML
files cannot exceed 25 characters. Currently, the width of attributes cannot be changed
by the user. In the current version of DIAsDEM Workbench, “DocumentType” has
always the “null” value due to legacy reasons. In contrast to fixed width files, CSV-files
must not contain the attribute “DocumentType”.

1-20 DocumentType

21-45 Document

46-55 TextUnit

56-58 ClusterID

Cluster Result File: Valid local file name of a file to be created or replaced by DIAs-
DEM Workbench that conforms to Result File Format.
Thesaurus File: Valid local file name of existing DIAsDEM-specific thesaurus file as

described in section 4.3.1.

4.3.4 Module: Tag Text Units

Result File Format : One of two result file formats (i.e., comma separated values and fixed
width values) supported by DIAsDEM Workbench that are described in section 4.3.1.
Cluster Result File: Valid local file name of a file to be created or replaced by DIAs-

DEM Workbench that conforms to Result File Format.
Cluster Label File: Valid local file name of existing file created by DIAsDEM Work-

bench in File → Monitor Cluster Quality and possibly modified by Tools → Cluster
Label Editor.

4.4 XML Tagging of Texts

4.4.1 Module: Tag Documents

Unstructured DTD File: Valid local file name of file to be created or replaced by DIAs-
DEM Workbench that contains meta-data about the preliminary XML document type
definition, its XML tags and their attribues in a DIAsDEM-specific format. The follow-
ing Unstructured DTD File has been created in this case study:

#This is an automatically created file: Please do not edit this file manually!

#Thu Mar 20 21:02:51 CET 2003

NUMBER_OF_UNTAGGED_TEXT_UNITS=777

ELEMENTS_FILE_NAME=/home/.../DIAsDEM.cases/tutorial/unstructured.dud.elements

MIN_ATTRIBUTE_REL_SUPPORT=0.1

ROOT_ELEMENT=CommercialRegisterEntry

NUMBER_OF_TEXT_UNITS=10702

90

4 Technical Specification – 4.4 XML Tagging of Texts

XML_DTD_FILE_NAME=/home/.../DIAsDEM.cases/tutorial/unstructured.dud.xml

NUMBER_OF_TAGGED_TEXT_UNITS=9925

NUMBER_OF_DOCUMENTS=1146

RANDOM_SAMPLE_SIZE=0.05

ATTRIBUTES_FILE_NAME=/home/.../DIAsDEM.cases/tutorial/unstructured.dud.attributes

As shown below, the file /home/.../DIAsDEM.cases/tutorial/unstructured.dud.
elements contains meta-data about DTD elements (i.e., XML tags):

UnstructuredDtdElement,AbsoluteSupport,RelativeSupport

"AppointmentOfManagingDirector" 885 0.7722513089005235

"ChangeOfFirmName" 60 0.05235602094240838

"ChangeOfPlaceOfDomicile" 35 0.030541012216404886

...

"SolePowerToRepresent_PowerToContractWithOneself" 640 0.5584642233856894

The file /home/.../DIAsDEM.cases/tutorial/unstructured.dud.attributes con-
tains meta-data about attributes of DTD elements (i.e., XML tags) as exemplified below:

UnstructuredDtdElement,UnstructuredDtdAttribute,MostProbableType,

AbsoluteSupport,RelativeSupport

"AppointmentOfManagingDirector" "Date" "Date" 255 0.288135593220339

"AppointmentOfManagingDirector" "Person" "Person" 755 0.8531073446327684

"ChangeOfFirmName" "Company" "Company" 60 1.0

...

"ShareCapital" "AmoutOfMoney" "AmoutOfMoney" 893 0.9944320712694877

Random Sample File: Valid local file name of file to be created or replaced by DIAs-
DEM Workbench which contains a random sample from all text units (i.e., both tagged
and untagged ones) in a DIAsDEM-specific format. Along with Unstructured DTD File,
this file is input to the module Tools → Tagging Quality Evaluation. For example, see
below three lines of Random Sample File as created in this case study. Note that the
second line corresponds to an untagged sentence, whereas the remaining ones contain
semantically annotated sentences.

/home/kwinkler/diasdem/DIAsDEM.cases/tutorial/xml/file10849.txt.xml

<PublicationMediaOfCommercialRegisterEntries>Nicht eingetragen: Die

Bekanntmachungen der Gesellschaft erfolgen im Bundesanzeiger.

</PublicationMediaOfCommercialRegisterEntries>

/home/kwinkler/diasdem/DIAsDEM.cases/tutorial/xml/file10421.txt.xml Die

Gesellschafterversammlung vom 17. Oktober 1997 hat die Erhöhung des

Stammkapitals um 50.000 DM auf 100.000 DM und die Änderung des

Gesellschaftsvertrages in § 3 (Stammkapital, Stammeinlagen) beschlossen.

/home/kwinkler/diasdem/DIAsDEM.cases/tutorial/xml/file10034.txt.xml

<NumberOfLimitedPartners>2 Kommanditisten.</NumberOfLimitedPartners>

91

List of Abbreviations

DFG Deutsche Forschungsgemeinschaft (German Research Society)

DIAsDEM Datenintegration von Altlastdaten und semistrukturierten Dokumenten mit
Mining Verfahren (German project acronym that stands for “integration of
legacy data and semi-structured documents with data mining techniques”)

DTD Document Type Definition

FN false negative

FP false positive

geb. geboren (born on a date)

HHL Handelshochschule Leipzig (Leipzig Graduate School of Management)

ID identifier

KDD Knowledge Discovery in Databases

KDT Knowledge Discovery in Textual Databases

NE named entity

NEEX Named Entity Extractor (module of DIAsDEM Workbench)

POS part-of-speech

Regex regular expression

TFxIDF term frequency multiplied by inverse document frequency

TN true negative

TP true positive

Weka Waikato Environment for Knowledge Analysis

XML Extensible Markup Language

List of Relevant German Vocabulary

The following list contains German nouns and verbs that might be useful to understand
the meaning of Commercial Register entries in this case study. This list is based on a
translation of the German Commercial Code by Peltzer, Doyle and Voight which includes
a concise introduction to the German Commercial Code as well [PDV00, pp. 1–32].

Aktiengesellschaft (AG) German joint stock corporation

Aktionär (Aktionäre) shareholder of German joint stock corporation (AG)

Amtsgericht District Court in Germany; a local Commercial Register is usually main-
tained by the respective District Court

Änderung change or modification of sth. (e.g., modification of partnership agreement)

Anspruch legal claim against sb.

Bauvorhaben building project; here: purpose of certain companies

Beginn here: commencement of operations

beginnen (beginnt) here: to commence with operations

Bekanntmachung (Bekanntmachungen) information that has to be officially published
by companies according to the German Commercial Code

Bundesanzeiger official German newspaper that weekly publishes Commercial Register
entries and corporate news

bestellen (bestellt) here: to appoint sb. to a position of responsibility (e.g., to appoint
sb. as managing director of a German limited liability company)

eingetragen here: (e.g., legal facts) to be registered with the Commercial Register

Einzelvertretungsbefugnis sole power to legally represent a company (in contrast to
joint power to represent a company)

erfolgen (erfolgt) here: to publish information according to the German Commercial
Code

List of Relevant German Vocabulary

Erhöhung increase in sth. (e.g., increase in share capital)

erteilen (erteilt) here: to confer (e.g., Prokura or power to represent a company)

Firma here: legal name of a company as registered in the respective Commercial Register;
legal name under which a merchant transacts business and executes agreements; a
merchant may sue and may be sued under his firm name

Geschäftsführer, Geschäftsführerin managing director of German limited liability com-
pany (GmbH)

Gesellschafter, Gesellschafterin partner in German commercial partnership (e.g., OHG
and KG) or in German limited liability company (GmbH)

Gesellschaft here: (commercial) partnership and company, respectively

Gesellschaft mit beschränkter Haftung (GmbH) German limited liability company

Gesellschafterversammlung meeting of (commercial) partners and share holders, re-
spectively

Gesellschaftsvertrag commercial partnership agreement

Handel mit Waren trading of goods

Kommanditist (Kommanditisten) fully liable partner in German limited partnership
(KG)

Kommanditgesellschaft (KG) German limited partnership

Offene Handelsgesellschaft (OHG) German commercial partnership

Prokura power to legally represent a company regulated by the German Commercial
Code; Prokura includes all judicial and non-judicial transactions that are related
to the operations of a commercial business; Prokura might be conferred with either
sole or joint power of representation

Stammkapital share capital of German limited liability company (GmbH)

Tätigkeit here: purpose of company

vertreten (vertritt) here: to legally represent a company

Vorstand managing board of German joint stock company (AG)

Zweigniederlassung branch office of a company

94

Bibliography

[GSW01] Henner Graubitz, Myra Spiliopoulou, and Karsten Winkler. The DIAsDEM
framework for converting domain-specific texts into XML documents with data
mining techniques. In Proceedings of the First IEEE International Conference
on Data Mining, pages 171–178, San Jose, CA, USA, November/December
2001.

[GWS01] Henner Graubitz, Karsten Winkler, and Myra Spiliopoulou. Semantic tagging
of domain-specific text documents with DIAsDEM. In Proceeding of the 1st
International Workshop on Databases, Documents, and Information Fusion
(DBFusion 2001), pages 61–72, Magdeburg, Germany, May 2001.

[ISO86] ISO. Documentation: Guidelines for the establishment and development of
monolingual thesauri. Technical Report ISO 2788-1986 (E), International Or-
ganisation for Standardization, 1986.

[PDV00] Martin Peltzer, Jonathan J. Doyle, and Elizabeth A. Voight. German Com-
mercial Code: German-English Text with an Introduction in English. Verlag
Dr. Otto Schmidt, Köln, 4th revised edition, 2000.

[Sch94] Helmut Schmid. Probabilistic part–of–speech tagging using decision trees. In
Proceedings of International Conference on New Methods in Language Process-
ing, pages 44–49, Manchester, UK, September 1994. TreeTagger is available
at http://www.ims.uni-stuttgart.de/∼schmid, accessed 2003-04-01.

[Sul01] Dan Sullivan. Document Warehousing and Text Mining. John Wiley & Sons,
New York, Chichester, Weinheim, 2001.

[SW02] Myra Spiliopoulou and Karsten Winkler. Text Mining auf Handelsregister-
einträgen: Der SAS Enterprise Miner im Einsatz. In Klaus D. Wilde, Hajo
Hippner, and Melanie Merzenich, editors, Data Mining: Mehr Gewinn aus
Ihren Kundendaten, pages 117–124. Verlagsgruppe Handelsblatt, Düsseldorf,
2002.

[WF99] Ian H. Witten and Eibe Frank. Data Mining: Practical Mechine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann, San

Bibliography

Francisco, 1999. Weka is available at http://www.cs.waikato.ac.nz/∼ml/weka,
accessed 2003-04-01.

[WS01a] Karsten Winkler and Myra Spiliopoulou. Extraction of semantic XML DTDs
from texts using data mining techniques. In Proceedings of the K-CAP 2001
Workshop on Knowledge Markup and Semantic Annotation, pages 59–68, Vic-
toria, BC, Canada, October 2001.

[WS01b] Karsten Winkler and Myra Spiliopoulou. Integrating data and probabilistic-
ally structured text documents. In Proceedings des 5. Workshops “Föderierte
Datenbanken” und GI Arbeitstreffen “Konzepte des Data Warehousing”
(FDBS 2001), pages 16–29, Berlin, Germany, October 2001.

[WS01c] Karsten Winkler and Myra Spiliopoulou. Semi-automated XML tagging of
public text archives: A case study. In Proceedings of EuroWeb 2001 “The
Web in Public Administration”, pages 271–285, Pisa, Italy, December 2001.

[WS02a] Karsten Winkler and Myra Spiliopoulou. Employing text mining for semantic
tagging in DIAsDEM. KI – Künstliche Intelligenz, 16(2):27–29, 2002.

[WS02b] Karsten Winkler and Myra Spiliopoulou. Structuring domain-specific text
archives by deriving a probabilistic XML DTD. In Proceedings of the 6th
European Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD’02), pages 461–474, Helsinki, Finland, August 2002.

[WS02c] Karsten Winkler and Myra Spiliopoulou. Text Mining in der Wettbewerber-
analyse: Konvertierung von Textarchiven in XML-Dokumente. In Data Min-
ing und Statistik in Hochschule und Wirtschaft: Proceedings der 6. Konferenz
der SAS-Anwender in Forschung und Entwicklung (KSFE), pages 347–363,
Dortmund, Germany, February/March 2002.

96

