
Technical Report

Getting Started with
DIAsDEM Workbench 2.2:

A Case-Based Tutorial

Karsten Winkler

Otto von Guericke University of Magdeburg
Faculty of Computer Science
Research Group ITI/KMD
E-Mail: k@rsten-winkler.de

Copyright: September 2007
All rights reserved.

O

T
T
O

-V
O

N
-G

U
E

R

IC
KE-UNIVERSIT

Ä
T

M
A

G
D

E
B

U
R

G

ii

Contents

1 Introduction 1

1.1 DIAsDEM Framework . 1

1.2 Code Credits, Third-Party Licenses, and Trademarks 4

1.3 License of DIAsDEM Workbench 2.2 . 7

1.4 Typographical Conventions . 7

1.5 Semantic XML Tagging of English Texts 8

2 Installation 9

2.1 Prerequisites . 9

2.2 Unix/Linux . 9

2.3 Windows . 10

3 Case Study 12

3.1 Application Domain and Data Set . 12

3.2 Text Pre-Processing in the KDT Phase . 13

3.2.1 Starting the Batch Script Recorder 15

3.2.2 Creating a New Project . 16

3.2.3 Creating a Document Collection 18

3.2.4 Importing Plain Text Files . 20

3.2.5 Creating Text Units . 22

3.2.6 Tokenizing Text Units . 25

3.2.7 Replacing Named Entities with NEEX 2.1 29

3.2.8 Lemmatizing Text Units . 36

3.3 Iterative Clustering in the KDT Phase . 40

3.3.1 Computing Term Frequency Statistics 40

3.3.2 Viewing Term Frequency Statistics 42

3.3.3 Editing Domain-Specific Thesauri 44

3.3.4 Vectorizing Text Units in Iteration 1 46

3.3.5 Clustering Text Unit Vectors in Iteration 1 51

3.3.6 Monitoring Cluster Quality in Iteration 1 55

3.3.7 Editing the Cluster Label File in Iteration 1 60

3.3.8 Tagging Text Units in Iteration 1 62

3.3.9 Summary of KDD Process Iteration 2 66

Contents – Contents

3.4 XML Tagging of Texts in the KDT Phase 69
3.4.1 Establishing a Concept-Based XML DTD 69
3.4.2 Tagging Documents . 72
3.4.3 Evaluating the Tagging Quality . 75
3.4.4 Stopping the Batch Script Recorder 80

3.5 Summary of the Application Phase . 80
3.5.1 Preparing the Application Phase 81
3.5.2 Editing the Batch Script . 82
3.5.3 Executing the Batch Script . 85

3.6 Auxiliary Tasks . 87
3.6.1 Removing Stopwords . 87
3.6.2 Establishing an Initial Thesaurus 88

4 Technical Specification 90
4.1 DIAsDEM Documents . 90
4.2 DIAsDEM Batch Scripts . 91
4.3 Text Pre-Processing . 91

4.3.1 Create Text Units . 91
4.3.2 Tokenize Text Units . 92
4.3.3 Replace Named Entities 2.1 . 94
4.3.4 Remove Stopwords . 101
4.3.5 Lemmatize Text Units . 102

4.4 Iterative Clustering . 104
4.4.1 Vectorize Text Units 2.2 . 104
4.4.2 Cluster Text Unit Vectors (Weka) 106
4.4.3 Monitor Cluster Quality 2.2 . 107
4.4.4 Tag Text Units . 109

4.5 XML Tagging of Texts . 109
4.5.1 Derive Conceptual DTD 2.2 . 109
4.5.2 Tag Documents 2.2 . 109

List of Abbreviations 111

List of Relevant German Vocabulary 112

Bibliography 114

iv

1 Introduction

Most organizations are not only ‘drowning’ in data, they are also ‘struggling’ to cope
with huge amounts of text documents. It is estimated that up to 80% of a company’s
information is stored in unstructured textual documents [Sul01, p. 56]. Hence, capturing
interesting and actionable knowledge from textual databases is a major challenge. Cre-
ating semantic markup is one form of providing explicit knowledge about text archives
to facilitate information retrieval or to enable information integration with related data
sources. Unfortunately, most users are not willing to manually create high-quality and
consistent semantic metadata due to the efforts and costs involved. Thus, text mining
techniques are required that (semi-) automatically create semantic markup.

Using the Extensible Markup Language XML, semantic annotation of text archives
results in domain-specific, semantic metadata in the form of XML tags that adhere
to a domain-specific XML document type definition (DTD). Semantic metadata can
be utilized to facilitate, for example, knowledge management and information integra-
tion. Appropriate XML query languages could be employed to submit both content-
and structure-based queries against semantically tagged XML archives. However, two
main problems must be solved to semi-automatically create text annotations: Firstly, a
concept-based XML document type definition should be derived for each textual archive.
Secondly, all text documents contained in an archive should be semantically tagged ac-
cording to the previously established document type definition.

In the next section, the DIAsDEM1 framework for semantic tagging of large, domain-
specific text archives is concisely introduced. The reader might refer to [GWS01, GSW01,
WS01c, WS01a, GWS01] for a complete description of the DIAsDEM framework. Fig-
ure 1.1 illustrates the user interface of DIAsDEM Workbench 2.2. The Java-based re-
search prototype supports the entire framework including automated batch processing.

1.1 DIAsDEM Framework

In the research project DIAsDEM, the notion of semantic tagging refers to annotat-
ing texts with domain-specific, content-descriptive XML tags that optionally comprise
attributes describing extracted named entities (e.g., names of persons). Rather than
classifying entire documents or tagging single terms, we aim at semantically annotating

1The acronym DIAsDEM is the name of a research project funded by Deutsche Forschungsgemeinschaft
(German Research Society, http://www.dfg.de), DFG grants: SP 572/4-1 and SP 572/4-3.

1 Introduction – 1.1 DIAsDEM Framework

Figure 1.1: Java-based GUI of DIAsDEM Workbench 2.2

structural text units, such as sentences or paragraphs, to make their semantics explicit.
The following example illustrates two tagged sentences contained in a German Commer-
cial Register entry such that each sentence is a text unit:

<BusinessPurpose> Der Betrieb von Spielhallen in Teltow und das Aufstellen von Geldspiel-

und Unterhaltungsautomaten. </BusinessPurpose>

<AppointmentManagingDirector Person="Balski; Pawel"> Pawel Balski ist zum Geschäfts-

führer bestellt. </AppointmentManagingDirector>

Semantic tagging in DIAsDEM is a two-phase process. We have designed a knowledge
discovery in textual databases (KDT) process that constitutes the first phase to discover
clusters of semantically similar text units, to derive a concept-based XML DTD describ-
ing the archive, and to semantically mark up documents in XML accordingly. The KDT
process, which is depicted in Figure 1.2, results in a final set of clusters. Their semantic
labels serve as DTD elements and XML tags, respectively. Huge amounts of new docu-
ments from the same domain are automatically converted into XML documents in the
second, batch-oriented, and productive phase of the DIAsDEM framework.

Besides the initial text documents to be tagged, the following domain knowledge
constitutes input to the KDT process: a thesaurus [ISO86] containing a domain-specific
taxonomy of terms and concepts, as well as descriptions of relevant named entities (e.g.,
names of persons and companies).

Similarly to a conventional KDT process, the process starts with a pre-processing
phase that includes basic NLP pre-processing tasks, such as tokenization, normaliza-
tion, lemmatization, and named entity extraction. Instead of removing stop words, we
establish a drastically reduced feature space by selecting a limited set of terms and con-
cepts (i.e., so-called text unit descriptors) from the domain-specific thesaurus. Text unit

2

1 Introduction – 1.1 DIAsDEM Framework

==========
==========
==========
 =========
==========
==========
 =========
==========

=======

=======

========

==========
==========
==========
 =========
==========
==========
 =========
==========

=======

=======

========

==========
==========
==========
 =========
==========
==========
 =========
==========

=======

=======

========

====
====

====
====

====
====

====
====

====
====

====
====

====
====

====
====

+

 ++ ====
====

 ====
 ====

==
==

====
====

=====
=====

===
===

==
==

=====

======
======

====
====

 ====
 ====

===========:
======, ==, ==,

===========:
======, ==, ==,

===========:
======, ==, ==,

===========:
======, ==, ==,

==========

==========
==========

==========

<−>====<\>
<−>=======

=====<\>
 <−>======

=======<\>
 <−>======
=======<\>

==========

==========
==========

==========

<−>====<\>
<−>=======

=====<\>
 <−>======

=======<\>
 <−>======
=======<\>

==========

==========
==========

==========

<−>====<\>
<−>=======

=====<\>
 <−>======

=======<\>
 <−>======
=======<\>

<========>

<=======>
<=======>
<====>
<======>
<======>
<========>

<=====>

<=======>

====
====

 ====
 ====

==
==

====
====

=====
=====

===
===

==
==

=====

======
======

====
====

 ====
 ====

 _ _

 _

Persons:

Dates:

==== ============
==== =============
==== ========
==== =============
==== ===========
==== ============

==== ==.======.===
==== ==.==.===
==== ==.=======.===
==== ==.==.===

==== =============

==== =============

\==\==\==
\==\==\====
\==\=====\==

\===\==
\====\==

Date =

Place =

Corporation =

Currency =

Person = ==========
 ==========
 ==========

 =====
 =====
 =====

 ====, ====,
 ===, ===, ===,
 ======, ====

Clustering of Text Unit Vectors:
Selection of Algorithm, Parameter Setting,

Execution of Algorithm, Ranking of Clusters

Semantic Labeling of Acceptable Clusters, Deriving a Concept−
Based XML DTD, Semantic XML Tagging of Text Documents

Text Unit Creation, Tokenization, Named Entity Extraction, ...

Text Documents in
Training Archive

Controlled Vocabulary
(e.g., Thesaurus)

Qualitatively
Acceptable Clusters

Parameterized
KDT Process Flow

Semantically Marked−
Up XML Documents

XML Document
Type Definition

Qualitatively Un−
Acceptable Clusters

Extracted
Named Entities

Descriptions of
Named Entity Types

Input:

Output:

C
lu

st
er

in
g

Ite
ra

tio
n

Pre−Processing of Text Documents:

Post−Processing of Discovered Patterns:

Mapping Text Units onto Text Unit Vectors

Figure 1.2: Iterative and Interactive KDT Process of the DIAsDEM Framework

descriptors are chosen by the knowledge engineer because they must reflect important
concepts of the application domain. Text units are initially mapped onto Boolean vec-
tors of this feature space. Thereafter, Boolean text unit vectors are further processed
by applying the information retrieval TFxIDF weighting schema.

In the pattern discovery phase, all text unit vectors contained in the initial archive
are clustered based on content similarity. The objective is to discover dense and ho-
mogeneous text unit clusters. Clustering is performed in multiple iterations. Each
iteration outputs a set of clusters, which is subsequently partitioned into qualitatively
acceptable and unacceptable ones according to framework-specific quality criteria. A
cluster of text unit vectors is qualitatively acceptable if (i) its cardinality is sufficiently
large, (ii) the corresponding text units are homogeneous, and (iii) the text units can be
content-descriptively characterized by a small number of text unit descriptors. Mem-
bers of acceptable clusters are subsequently removed from the data set for later labeling
whereas the remaining text unit vectors are input to the clustering algorithm in the next
iteration. In each iteration, the cluster similarity threshold value is gradually decreased
such that acceptable clusters become progressively less specific in content. The KDT
process is based on a plug-in and a plug-out concept that allows the execution of various
clustering algorithms within DIAsDEM Workbench.

In the post-processing phase, qualitatively acceptable clusters are semi-automatically
assigned a semantic label. DIAsDEM Workbench suggests default cluster labels for ac-

3

1 Introduction – 1.2 Code Credits, Third-Party Licenses, and Trademarks

ceptable clusters that are derived from prevailing feature space dimensions (i.e., text
unit descriptors) in each acceptable cluster. Cluster labels actually correspond to XML
tags that are subsequently used to annotate cluster members. Thereafter, a concept-
based XML DTD is derived that coarsely describes the semantic structure of the XML
collection by enumerating discovered XML tags. Finally, original documents are anno-
tated by valid XML tags with respect to the derived XML DTD. The archive-specific
XML tags optionally include attributes reflecting previously extracted named entities
and their values. The following DTD excerpt was created in a case study [WS01c]:

<!ELEMENT CommercialRegisterEntry (#PCDATA | BusinessPurpose | ShareCapital |

SupervisoryBoard | AppointmentManagingDirector | (...) | Owner |

FoundationPartnership)* > <!ELEMENT BusinessPurpose (#PCDATA)> (...)

<!ELEMENT FoundationPartnership (#PCDATA)>

1.2 Code Credits, Third-Party Licenses, and Trademarks

Markus Banach, Martin Christian, Henner Graubitz, Ingo Kampe, Heiko Scharff, and
Karsten Winkler are code contributors. The research project DIAsDEM is funded
by Deutsche Forschungsgemeinschaft (German Research Foundation), DFG grants SP
572/4-1 and SP 572/4-3. Information about Deutsche Forschungsgemeinschaft is avail-
able at http://www.dfg.de.

DIAsDEM Workbench 2.2 utilizes software developed by the JDOM Project (http://
www.jdom.org/). Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All
rights reserved. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions,
and the disclaimer that follows these conditions in the documentation and/or other materials
provided with the distribution.

3. The name ”JDOM” must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact <license AT jdom DOT
org>.

4. Products derived from this software may not be called ”JDOM”, nor may ”JDOM” appear in
their name, without prior written permission from the JDOM Project Management <pm AT jdom
DOT org>.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

4

1 Introduction – 1.2 Code Credits, Third-Party Licenses, and Trademarks

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the JDOM

Project and was originally created by Jason Hunter <jhunter AT jdom DOT org>and Brett McLaughlin

<brett AT jdom DOT org>. For more information on the JDOM Project, please see <http://www.jdom.

org/>.

DIAsDEM Workbench 2.2 utilizes WEKA 3.4.3, 29 September 2004, Java Programs
for Machine Learning. Copyright (C) 1998-2004 University of Waikato. WEKA is dis-
tributed under the GNU public license available at http://www.opensource.org/licenses/
gpl-license.php.

DIAsDEM Workbench 2.2 utilizes GNU Regular Expressions for Java 1.0.8 (http://
www.cacas.org/java/gnu/regexp/). GNU Regular Expressions for Java 1.0.8 is distrib-
uted under the GNU Lesser General Public License available at http://www.opensource.
org/licenses/lgpl-license.php.

DIAsDEM Workbench 2.2 utilizes JGoodies Looks 1.2.2 (http://www.jgoodies.com/
freeware/looks/). The BSD License for the JGoodies Looks: Copyright (c) 2001-2004
JGoodies Karsten Lentzsch. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following
conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

• Neither the name of JGoodies Karsten Lentzsch nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIB-

UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-

STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-

RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-

TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING

5

1 Introduction – 1.2 Code Credits, Third-Party Licenses, and Trademarks

IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-

ITY OF SUCH DAMAGE.

DIAsDEM Workbench 2.2 utilizes JGoodies Forms 1.0.2 (http://www.jgoodies.com/
freeware/forms/). The BSD License for the JGoodies Forms: Copyright (c) 2003 JGood-
ies Karsten Lentzsch. All rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions
are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

• Neither the name of JGoodies Karsten Lentzsch nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIB-

UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-

STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-

RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-

TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING

IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-

ITY OF SUCH DAMAGE.

DIAsDEM Workbench 2.2 utilizes hypKNOWsys Algorithms 0.1, Java Package for
Knowledge Discovery and Knowledge Management. hypKNOWsys Algorithms is based
on and extends WEKA 3.3.3, 28 June 2002, Java Programs for Machine Learning, Copy-
right (C) 1998, 1999, 2000, 2001, 2002 Eibe Frank, Leonard Trigg, Mark Hall, Richard
Kirkby. hypKNOWsys Algorithms is distributed under the GNU public license available
at http://www.opensource.org/licenses/gpl-license.php.

In the task ‘Search the Web for HTML Files’, DIAsDEM Workbench 2.2 utilizes the
run-time library (in the file $DIAsDEM HOME/lib/googleapi.jar) of the Google Web
APIs (TM) exactly as supplied by Google. In order to use the Google Web APIs,
users first must register with Google to receive a personal authentication key and de-
clare to abide by Google’s terms of use. As of May 2004, this can be done online at
http://www.google.com/apis/. Please see the Google’s terms of use, a copy of which

6

1 Introduction – 1.3 License of DIAsDEM Workbench 2.2

is available in the file DIAsDEM HOME/lib/googleapi.license.txt, for more informa-
tion. Excerpt of Google’s terms of use: “INTELLECTUAL PROPERTY You agree
not to remove, obscure, or alter Google’s copyright notice, trademarks, or other pro-
prietary rights notices affixed to or contained within Google Web APIs. You also ac-
knowledge that Google owns all right, title and interest in and to Google Web APIs,
including without limitation all intellectual property rights (the “Google Rights”). The
Google Rights include rights to the following: (1) the APIs developed and provided by
Google, (2) all software associated with the Google Web APIs server, and (3) the search
results and spell checking you obtain when you use Google Web APIs. The Google
Rights do not include the following: (1) third party components used as part of Google
Web APIs; or (2) software developed by you in conjunction with using Google Web
APIs.” The complete terms and conditions can be downloaded from the Google Web
site (http://www.google.com/apis/api terms.html).

Sun, Sun Microsystems, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK,
Java, the Java Coffee Cup logo, and Visual Java are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the United States and other countries. All other
tradenames, trademarks, and registered trademarks are the property of their respective
owners.

1.3 License of DIAsDEM Workbench 2.2

DIAsDEM Workbench 2.2, Copyright (C) 2000-2006, Henner Graubitz, Myra Spiliopou-
lou, Karsten Winkler. All rights reserved. DIAsDEM Workbench 2.2 is distributed under
the GNU general public license available at http://www.opensource.org/licenses/gpl-
license.php.

1.4 Typographical Conventions

Italic is used for emphasis within text and to indicate selectable items in DIAsDEM
Workbench dialogs and menus. Italic is also used to represent field names (i.e., pa-
rameters) in DIAsDEM Workbench dialogs. Courier is used to refer to directories, file
names, and file extentions. Additionally, Courier is used for computer output, XML
tags, and the content of files (e.g., XML and text files). In the remainder of this case
study, the following abbreviations indicate directories on your file system as listed below.
Note, these four abbreviations do not correspond to environment variables.

• ${DIAsDEM HOME} denotes the local directory of DIAsDEM Workbench, e.g. /home/
kwinkler/diasdem/DIAsDEM.workbench22.

7

1 Introduction – 1.5 Semantic XML Tagging of English Texts

• ${PARAMETER HOME} denotes the local subdirectory of ${DIAsDEM HOME} that con-
tains default parameter files, i.e., ${DIAsDEM HOME}/data/parameters.

• ${SAMPLES HOME} denotes the local subdirectory of ${DIAsDEM HOME} that contains
sample text files, i.e., ${DIAsDEM HOME}/data/samples.

• ${PROJECT HOME} denotes the local directory that contains all files related to a
single project, e.g., /home/kwinkler/diasdem/DIAsDEM.cases/tutorial.

1.5 Semantic XML Tagging of English Texts

The case study described in this technical report is based on processing German texts.
Nevertheless, our workbench is capable of processing English texts. For example, DIAs-
DEM Workbench includes tasks designed to import texts from two English Reuters
corpora; namely, the Reuters-21578 text categorization test collection compiled by David
D. Lewis and the new Reuters Corpus, Vol. 1, English Language, 1996-08-20 to 1997-
08-19 [RSW02, LYRL04]. Contact the author to obtain English parameter files, which
are not yet packaged into DIAsDEM Workbench.

8

2 Installation

2.1 Prerequisites

The target machine must be equipped with at least 256 MB memory. Either the Java
2 Runtime Environment 1.4.0 (or higher) or the Java 2 Software Development Kit,
Standard Edition, 1.4.0 (or higher) must be installed on the target machine. Visit
the Web site http://java.sun.com to download the required Java release. Note, Java
releases below 1.4 cannot be used to launch DIAsDEM Workbench because it heavily
depends on the support of regular expressions by the package java.util.regex. It is
strongly recommended using the latest Java release to profit from steady and noticeable
performance improvements.

2.2 Unix/Linux

1. Visit the Web site http://www.hypknowsys.org and follow the instructions to
download the compressed archive file DIAsDEM.workbench22.tar.gz.

2. Create a directory for DIAsDEM Workbench (e.g., /home/kwinkler/diasdem)
and copy the file DIAsDEM.workbench22.tar.gz into this directory. Additionally,
ensure that you have write permission in this new directory.

3. Make the DIAsDEM-specific directory (e.g., /home/kwinkler/diasdem) your cur-
rent working directory and unzip the compressed file archive by submitting the
following two commands at the prompt:

/home/kwinkler/diasdem> gunzip DIAsDEM.workbench22.tar.gz

/home/kwinkler/diasdem> tar -xf DIAsDEM.workbench22.tar

4. Using any common text editor, modify the environment variables JAVA HOME and
DIAsDEM HOME in both shell scripts DIAsDEM.workbench22/bin/diasdemgui and
DIAsDEM.workbench22/bin/diasdembatch (e.g., in the directory /home/kwinkler

/diasdem) according to your system. For example, if Java is installed in the di-
rectory /usr/lib/j2sdk1.4.0 01 and the file DIAsDEM.workbench22.tar.gzwas
uncompressed in the directory /home/kwinkler/diasdem, these two environment
variables have to be set as follows:

2 Installation – 2.3 Windows

DIAsDEM HOME=/home/kwinkler/diasdem/DIAsDEM.workbench22

JAVA HOME=/usr/lib/j2sdk1.4.0 01

5. Make sure that both shell scripts DIAsDEM.workbench22/bin/diasdemgui and
DIAsDEM.workbench22/bin/diasdembatch (e.g., in the directory /home/kwinkler

/diasdem) are executable files:

/home/kwinkler/diasdem> chmod a+x

DIAsDEM.workbench22/bin/diasdemgui

/home/kwinkler/diasdem> chmod a+x

DIAsDEM.workbench22/bin/diasdembatch

6. Thereafter, the graphical user interface of DIAsDEM Workbench can be launched
by executing the shell script DIAsDEM.workbench22/bin/diasdemgui (e.g., below
the directory /home/kwinkler/diasdem).

/home/kwinkler/diasdem> DIAsDEM.workbench22/bin/diasdemgui

7. The command line batch script processor of DIAsDEM Workbench can be launched
by executing the shell script DIAsDEM.workbench22/bin/diasdembatch (e.g., be-
low the directory /home/kwinkler/diasdem). For example, the following state-
ment has to be submitted at the command prompt to execute the DIAsDEM batch
script /home/kwinkler/diasdem/exampleScript.dsc in verbose mode:

/home/kwinkler/diasdem> DIAsDEM.workbench22/bin/diasdembatch

/home/kwinkler/diasdem/exampleScript.dsc verbose

8. Finally, uncompress the text archive for case 1:

/home/kwinkler/diasdem> cd DIAsDEM.workbench22/data/samples/de/case1

/home/.../samples/de/case1> gunzip archive.tar.gz

/home/.../samples/de/case1> tar -xf archive.tar

2.3 Windows

1. Visit the Web site http://www.hypknowsys.org and follow the instructions to
download the compressed archive file DIAsDEM.workbench22.zip. This archive
includes exactly the same files and directories as DIAsDEM.workbench22.tar.gz.

2. Create a directory for DIAsDEM Workbench (e.g., C:\Programs\diasdem) and
copy the file DIAsDEM.workbench22.zip into this directory.

10

2 Installation – 2.3 Windows

3. Using, for example, WinZip available at http://www.winzip.com, extract the com-
pressed file into the DIAsDEM-specific directory (e.g., C:\Programs\diasdem).

4. Using any common text editor, modify the two environment variables JAVA HOME

and DIAsDEM HOME in both batch files DIAsDEM.workbench22\bin\diasdemgui.bat
and DIAsDEM.workbench22\bin\diasdembatch.bat (e.g., below the directory C:\

Programs\diasdem) according to your system. For example, if Java is installed
in C:\Programs\Java\j2re1.4.0 01 and the file DIAsDEM.workbench22.zip was
extracted in the directory C:\Programs\diasdem, these two environment variables
have to be set as follows:

DIAsDEM HOME=C:\Programs\diasdem\DIAsDEM.workbench22

JAVA HOME=C:\Programs\Java\j2re1.4.0 01

5. Thereafter, DIAsDEM Workbench can be launched by opening Windows Explorer
and double-clicking the batch file DIAsDEM.workbench22\bin\diasdemgui.bat

(e.g., below the directory C:\Programs\diasdem).

6. The command line batch script processor of DIAsDEM Workbench can be launched
by executing the batch file DIAsDEM.workbench22\bin\diasdembatch.bat (e.g.,
below the directory C:\ Programs\diasdem). For example, the following state-
ment has to be submitted at the MS-DOS prompt to execute the DIAsDEM batch
script C:\Programs\diasdem\exampleScript.dsc in verbose mode:

C:\Programs\diasdem> DIAsDEM.workbench22\bin\diasdembatch.bat

C:\Programs\diasdem\exampleScript.dsc verbose

7. Using Windows95 or Windows98 with standard system configurations, double-
clicking diasdemgui.bat is likely to produce an “environment out of memory”
error. In this case, the MS-DOS environment must be allocated more memory.
Open Windows Explorer, right-click the icon of diasdemgui.bat, select Proper-
ties, click on the Memory tab, and adjust Initial Environment from Auto to 2048.
After clicking on OK to commit the change, a PIF file (i.e., diasdemgui.pif) is
created, which should afterwards be double-clicked to start DIAsDEM Workbench.
The environment memory allocated to the batch file diasdembatch.bat must also
be increased. Thereafter, DIAsDEM batch script files can be executed by launch-
ing the respective PIF file diasdembatch.pif instead of diasdembatch.bat:

C:\Programs\diasdem> DIAsDEM.workbench22\bin\diasdembatch.pif

C:\Programs\diasdem\exampleScript.dsc verbose

8. Finally, uncompress the text archive for case 1 using, for example, WinZip. The file
archive.tar.gz is located in DIAsDEM.workbench22\data\samples\de\case1.

11

3 Case Study

3.1 Application Domain and Data Set

In Germany, each district court maintains a Commercial Register that contains im-
portant information about the companies in the court’s district. According to law,
many company activities (e.g., establishment of branch offices, changes of share capi-
tal, or mergers and acquisitions) must be reported to the competent Register. Knowl-
edge of these entries is indispensable for business activities, as they have both a right-
confirmation and a right-generating effect according to the German Commercial Code.

Commercial Register entries are made available to the public since up-to-date knowl-
edge about a company’s affairs is essential to its (prospective) stakeholders. Three main
categories of Commercial Register entries can be distinguished: foundation entries of new
companies, update entries (e.g., changes in the managerial head of a company), and en-
tries announcing that a company closes. The conceptual model the application domain
is partly depicted as UML class diagrams in Figure 3.1 and Figure 3.2, respectively.

The directory ${SAMPLES HOME}/de/case1 contains 1146 German Commercial Regis-
ter entries published by the district court Potsdam in 1999 via its Web site (http://www.
amtsgericht-potsdam.org). Each entry announces the foundation of a new company in
the Potsdam district. Table 3.1 illustrates the content of the file ${SAMPLES HOME}/de/
case1/file10780.training.txt. Altogether, 985 text files (*.training.txt) are in-
put to the first, interactive, and iterative KDT phase of the DIAsDEM framework.
The remaining 161 files, which have the extension .application.txt, are automati-

Registered name
Foundation date
Liquidation date
Business purpose

District court
Commercial Register section
Record number

Publication date
Registration date
Entry type
Registered text

Registered place
Business address

1..*

0..*1

Main office

1
Company

Commercial Register record

Commercial Register entry

Office

Branch office

Registered name affix

1
1

1

1

Figure 3.1: Simplified Application Domain (UML Class Diagram)

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

Registered name
Foundation date
Liquidation date
Business purpose

Main office
Unlimited liable partners[..]: Entity

Title

Surname
Forename

Place of residence
Date of birth

Share capital: Amount of money
Managing directors[..]: Natural person

Partnership limited
by shares (KGaA)

General partner-
ship (OHG)

Captial stock: Amount of money
Managing board[..]: Natural person

Legal entity

Main office

Company

Entity

Partnership

Natural Person

Limited partnership (KG)

Number of limited partners

Sole proprietorship

Owner: Natural person

Joint stock company (AG)

Limited liability company (GmbH)

Figure 3.2: Simplified Taxonomy of German Companies (UML Class Diagram)

cally tagged in the second, batch-oriented application phase by applying the previously
trained text unit clusterer. All files are ISO-8856-1 encoded and have Unix/Linux line
feeds. However, each entry is stored in a single line to avoid line feed related problems.
A concise list of relevant German vocabulary based on [PDV00] is available on page 112.

3.2 Text Pre-Processing in the KDT Phase

In the following screen shots of this case study, the directory /home/kwinkler/diasdem/

DIAsDEM.workbench22 corresponds to ${DIAsDEM HOME}. ${PROJECT HOME} corresponds
to /home/kwinkler/diasdem/DIAsDEM.cases/tutorial/trainingProject in the sec-
tions describing the interactive and iterative KDT phase of the DIAsDEM framework.
All file and directory names are Unix/Linux-based in this case study.

Create a new local directory ${PROJECT HOME} on your machine, which can be used
to store all files related to this case. Additionally, copy the entire directory template for
KDT phase projects, referred to as training projects, into the directory ${PROJECT HOME}:

DIAsDEM.cases/tutorial> pwd

/home/kwinkler/diasdem/DIAsDEM.cases/tutorial

DIAsDEM.cases/tutorial> cp -R ../../DIAsDEM.workbench22/data/templates/trainingProject .

DIAsDEM.cases/tutorial> ls

trainingProject

13

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

Der Handel mit Waren aller Art sowie Import und Export. Der Dienstleistungsbereich bezieht
sich auf Vermittlung, Beratung und Schulungen. Stammkapital: 50.000 DM. Gesellschaft mit
beschränkter Haftung. Der Gesellschaftsvertrag ist am 18. April 1994 abgeschlossen und am 04.
Dezember 1997 / 27. Mai 1998 abgeändert in §1 (Firma), §2 (Gegenstand) und §4 (Geschäftsführer).
Durch Beschluss der Gesellschafterversammlung vom 17. November 1998 ist der Sitz der Gesellschaft
von Maintal nach Damsdorf verlegt und der Gesellschaftsvertrag geändert in §1 (Firma und Sitz). Ist
nur ein Geschäftsführer bestellt, so vertritt er die Gesellschaft allein. Sind mehrere Geschäftsführer
bestellt, so wird die Gesellschaft durch zwei Geschäftsführer oder durch einen Geschäftsführer in
Gemeinschaft mit einem Prokuristen vertreten. Einzelvertretungsbefugnis kann erteilt werden.
Marion Marcella Adolph geb. Priester, 22.03.1957, Offenbach, ist zur Geschäftsführerin bestellt.
Sie ist befugt, Rechtsgeschäfte mit sich selbst oder mit sich als Vertreter Dritter abzuschließen.
Nicht eingetragen: Die Bekanntmachungen der Gesellschaft erfolgen im Bundesanzeiger.

Table 3.1: German Commercial Register Entry

The template for KDT phase projects comprises empty directories that are populated
during this case study. For example, intermediate DIAsDEM documents are stored
in the subdirectory ${PROJECT HOME}/inputCollection. At the end of this case study,
semantically annotated XML documents that correspond to the training text documents
are copied into the subdirectory ${PROJECT HOME}/outputXmlDocuments.

Make ${DIAsDEM HOME} your current working directory and start DIAsDEM Work-
bench by executing the shell script ${DIAsDEM HOME}/bin/diasdemgui on a Unix/Linux
system. If you are working on a Windows machine, simply double-click the batch file
diasdemgui.bat. Figure 1.1 on page 2 depicts DIAsDEM Workbench after startup.

The file DIAsDEM.plugins in ${DIAsDEM HOME} is a list of Java class names. Each
class name corresponds to a DIAsDEM Workbench plug-in that is initialized during the
start-up of DIAsDEM Workbench. DIAsDEM.config is another file created by DIAsDEM
Workbench to store various, project-independent settings. Select Tools → Options to
inspect and alter these settings, respectively. For example, you can choose your preferred
Web browser, XML file viewer (e.g., the Web browser), and text file editor in the tab
External Programs. Be cautious when editing GUI Properties because inappropriate
parameter values might cause DIAsDEM Workbench to terminate abnormally.

DIAsDEM.cases/tutorial> ls trainingProject

applicationParameters kddProcessIteration1 outputGateDocuments outputSqlScripts

batchScripts kddProcessIteration2 outputNeex21Files outputXmlDocuments

inputCollection kddProcessIteration3 outputSampleFiles README

DIAsDEM.cases/tutorial> cd /home/kwinkler/diasdem/DIAsDEM.workbench22

diasdem/DIAsDEM.workbench22> ls

DIAsDEM.plugins bin data doc lib src

diasdem/DIAsDEM.workbench22> bin/diasdemgui

diasdem/DIAsDEM.workbench22> ls

DIAsDEM.config DIAsDEM.plugins bin data doc lib src

diasdem/DIAsDEM.workbench22>

14

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

3.2.1 Starting the Batch Script Recorder

The entire interactive KDT phase is recorded in a DIAsDEM batch script to enable
subsequent automated semantic tagging. After slight adjustments, this recorded script
can be employed in the application phase to automatically annotate new Commercial
Register entries without time-consuming human intervention. DIAsDEM batch scripts
are XML documents conforming to the XML document type definition listed in Sub-
section 4.2 on page 91. Recording a batch script corresponds to saving all performed
scriptable tasks along with their parameter settings in a file for subsequent task automa-
tion. After recording a script, it can be modified either in the dedicated Batch Script
Editor (Solutions → Batch Script Processing → Edit Batch Script) or in any common
text editor. Using the Batch Script Editor, new scripts can also be created from scratch
as well. DIAsDEM Workbench allows executing batch scripts within the graphical user
interface (Solutions → Batch Script Processing → Execute Batch Script) and on the
command prompt by executing the shell script ${DIAsDEM HOME}/bin/diasdembatch
in Unix/Linux or the script ${DIAsDEM HOME}\bin\diasdembatch.bat in a Windows
environment.

Start recording all tasks performed hereafter by selecting Solutions → Batch Script
Processing → Record Batch Script and thereafter clicking the button Start. Alterna-
tively, tasks could be appended to an existing batch script by clicking the button Open
and subsequently choosing the desired file. Figure 3.3 depicts DIAsDEM Workbench
while recording a batch script. Stopping the current recording session, as well as saving,
editing, and executing the recorded batch script is explained in Subsection 3.4.4 and
Section 3.5.

Figure 3.3: DIAsDEM Workbench 2.2 after Starting the Batch Script Recorder

15

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

3.2.2 Creating a New Project

Training a text unit clusterer for Commercial Register entries in the KDT phase of our
framework constitutes an independent project. All input, intermediate, and output files
associated with a project are stored in a single directory (i.e., in ${PROJECT HOME}) and
its subdirectories to ensure a properly organized file system. Additionally, DIAsDEM
Workbench stores project-related data, such as most recently used parameter values, in
a DIAsDEM project file with the extension .dpr in the directory ${PROJECT HOME}. A
project must thus either be created or opened before any DIAsDEM task from the menu
Actions, such as importing texts or clustering text unit vectors, can be performed at all.
Consequently, select File → New Project to create a new DIAsDEM project and enter
the following parameters:

Parameter Value

Project Name Tutorial - KDT Phase

Project File Name ${PROJECT HOME}/project.dpr
Project Directory ${PROJECT HOME}
Parameter Directory ${PARAMETER HOME}

Figure 3.4: New Project Dialog

Make sure to replace the abbreviations ${PROJECT HOME} and ${PARAMETER HOME}
with the corresponding directories according to your individual installation of DIAs-
DEM Workbench. Recall, the abbreviation ${PARAMETER HOME} denotes the directory
${DIAsDEM HOME}/data/parameters in this case study. Therefore, it depends on the
installation directory ${DIAsDEM HOME} of DIAsDEM Workbench on your machine. Files
and directories can always be chosen by clicking the button “...” beside the respective
text field and afterwards selecting the desired file using the file dialog. The Java-based
file dialog can also be used to create new and rename existing directories, respectively.

16

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

Figure 3.4 shows the New Project dialog before clicking on OK. After clicking the
OK button, a new project labeled “Tutorial - KDT Phase” is created and immedi-
ately opened. Note, the title bar of DIAsDEM Workbench window always indicates the
actually opened project.

New Project: Summary

Task: File → New Project or Actions → Project Management → New Project

Use Case: The user wants to create a new DIAsDEM project to semantically anno-
tate text documents.

Prerequisites: A dedicated local Project Directory must have been created for storing
project-related files and subdirectories. Template directories for Project
Directory are provided in ${DIAsDEM HOME}/data/templates.

Result: A file Project File Name that contains project-related metadata is created
in Project Directory. Additionally, the project properties Project Name,
Project Notes, Absolute File Name of Project File, Absolute File Name
of Project Directory, and Absolute File Name of Parameter Directory are
set.

Remarks: The new project can be opened by selecting File → Open Project and
thereafter choosing Project File Name. Opened projects can be closed by
selecting File → Close Project.

New Project: Parameters

Project Name: Name of the new DIAsDEM project that might include blank spaces;
default value: <DefaultProjectName>

Project File Name: Valid local file name of project file to be created in Project Directory ;
file extension: .dpr

Project Directory : Existing local directory that should contain Project File Name and all
project-related files; corresponds to ${PROJECT HOME} in this case study

Parameter Directory : Existing local directory whose subdirectories contain default pa-
rameter files of default DIAsDEM tasks; corresponds to the directory
${PARAMETER HOME} in this case study

17

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

3.2.3 Creating a Document Collection

Text documents are considered a collection of related documents if they belong to the
same application domain and should be semantically tagged. DIAsDEM Workbench is
only capable of processing one collection at a time. Each document collection is identified
by a specific collection file with extension .dcf. This Collection File contains metadata
about the corresponding archive and references to all DIAsDEM documents constituting
the collection. Before texts can be imported into a collection for subsequent processing,
a new collection must be created. Therefore, select Actions → Prepare Data Set →
Create Document Collection and input the following parameters:

Parameter Value

Collection Name Tutorial (Training Documents)

Collection File ${PROJECT HOME}/collection.dcf
Collection Directory ${PROJECT HOME}/inputCollection
Documents Per Volume 1

Figure 3.5: Create Document Collection Dialog

Click on OK to create a new collection file. Thereafter, the directory ${PROJECT HOME}
contains the files collection.dcf and collection.dcf.files. In the remainder of this
case study, collection.dcf is referred to as Collection File. It uniquely identifies the
corresponding archive of Commercial Register entries and contains relevant metadata.
Each Collection File is accompanied by an auxiliary file with extention .dcf.files

(e.g., collection.dcf.files). This file only contains absolute file names of DIAsDEM
document volume files comprising the collection. Both Collection File and its auxiliary
file should neither be modified nor deleted manually.

The default implementation of DIAsDEM Workbench is file-based. Each DIAsDEM
collection consists of multiple so-called DIAsDEM volumes that in turn include one or

18

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

more DIAsDEM documents. In this case study, one document is stored per volume
file to improve clarity. Each DIAsDEM document contains the initially imported text,
both the original and the processed text units (e.g., sentences), as well as possibly
rollback text units, and structured metadata. In the default implementation, DIAsDEM
volumes are XML documents that conform to the XML document type definition listed
in Subsection 4.1 on page 90.

Create Document Collection: Summary

Task: Actions → Prepare Data Set → Create Document Collection

Use Case: The user wants to create a new DIAsDEM document collection to seman-
tically annotate text documents.

Prerequisites: A dedicated local Collection Directory must have been created for storing
DIAsDEM documents in DIAsDEM volumes.

Result: A new DIAsDEM collection is created in Collection Directory. It is labeled
Collection Name and can be referenced by Collection File. Additionally,
the project properties Default Collection File and Default Collection Di-
rectory are set.

Remarks: Most subsequent processing modules of DIAsDEM Workbench require
a specific Collection File as an input parameter. Text documents can
hereafter be imported into the new collection by selecting Actions →
Prepare Data Set → Import Plain Text Files.

Create Document Collection: Parameters

Collection Name: Name of the new document collection that might include blank spaces

Collection File: Valid local file name of new collection file; file extension: .dcf; proposed
value: ${PROJECT HOME}/collection.dcf

Collection Directory : Existing local directory that subsequently contains DIAsDEM vol-
ume files; default value: project property Default Collection Directory

Documents Per Volume: Number of DIAsDEM documents stored in a single DIAsDEM
volume file; default value: 10

19

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

3.2.4 Importing Plain Text Files

Commercial Register entries provided for case 1 are plain text files. They are imported
into the new, up to now empty document collection by selecting Actions → Prepare Data
Set → Import Plain Text Files. Please provide the following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Text File Directory ${SAMPLES HOME}/de/case1

Disabled: Include Subdirectories

File Name Extension .training.txt

Figure 3.6: Import Plain Text Files Dialog

Click the OK button to start importing altogether 985 text files with File Name
Extension from Text File Directory. These text files are imported into the new DIAs-
DEM collection referenced by Collection File. Check the content of the subdirectory
${PROJECT HOME}/inputCollection:

DIAsDEM.cases/tutorial/trainingProject> ls -l inputCollection | more

-rw-r--r-- 1 kwinkler users 1575 2007-08-12 15:49 DefaultDIAsDEMvolume.dtd

...

-rw-r--r-- 1 kwinkler users 1690 2007-08-12 15:56 volume100000.xml

-rw-r--r-- 1 kwinkler users 2037 2007-08-12 15:56 volume100001.xml

...

-rw-r--r-- 1 kwinkler users 1509 2007-08-12 15:56 volume100984.xml

DefaultDIAsDEMvolume.dtd is the XML document type definition of volume files.
For example, the DIAsDEM document that corresponds to the Commercial Register

20

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

entry listed in Table 3.1 (i.e., ${SAMPLES HOME}/de/case1/file10780.training.txt)
is stored in volume file ${PROJECT HOME}/inputCollection/volume100878.xml:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE DefaultDIAsDEMvolume SYSTEM "DefaultDIAsDEMvolume.dtd">

<DefaultDIAsDEMvolume NumberOfDocuments="1">

<DefaultDIAsDEMdocument NumberOfTextUnitsLayers="0">

<MetaData>

<Name>DiasdemDocumentID</Name>

<Content>/home/kwinkler/.../inputCollection/volume100878.xml:0</Content>

</MetaData>

<MetaData>

<Name>SourceFile</Name>

<Content>/home/kwinkler/.../de/case1/file10780.training.txt</Content>

</MetaData>

<OriginalText>Der Handel mit Waren aller Art sowie Import und Export. Der

Dienstleistungsbereich bezieht sich auf ... Bundesanzeiger.</OriginalText>

</DefaultDIAsDEMdocument>

</DefaultDIAsDEMvolume>

In the default implementation of our workbench, the metadata attribute Diasdem-

DocumentID is created by concatenating the absolute file name of the volume file, a
colon, and the index of the respective document (0, 1, . . .) within its volume. Note, the
original text will not be modified by any subsequently performed tasks.

Import Plain Text Files: Summary

Task: Actions → Prepare Data Set → Import Plain Text Files

Use Case: The user wants to employ DIAsDEM Workbench to semantically annotate
text documents that are stored in plain text files within a single local
directory or its subdirectories.

Prerequisites: Each text file contains exactly one text document.

Result: Files in Text File Directory whose file names end with File Name Ex-
tension are imported into Collection File and stored as DIAsDEM vol-
umes conforming to XML DTD DefaultDIAsDEMvolume.dtd described
in Subsection 4.1 on page 90. Additionally, the project properties Default
Collection File and Default Text File Directory are set.

Remarks: Texts can be imported from one directory after the other. Alternatively,
the user might implement a specialized DIAsDEM Workbench plug-in to
import text documents into a collection. In this case, additional metadata
can be included in DIAsDEM documents as well.

21

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

Import Plain Text Files: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: project property Default Collection File

Text File Directory : Existing local directory that contains text files to be imported; if
Include Subdirectories is enabled, text files stored in subdirectories of Text
File Directory are also imported; default value: project property Default
Text File Directory

File Name Extension: Text files are only imported if they have the specified file name
extension; default value: .txt

3.2.5 Creating Text Units

After importing texts into a collection, the data pre-processing phase starts with iden-
tifying and separating text units. In this case study, sentences of Commercial Register
entries correspond to text units. Hence, only sentences are semantically annotated by
DIAsDEM Workbench in the course of this case study. To proceed, select Actions →
Prepare Data Set → Create Text Units and type in the following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Text Unit Algorithm Heuristic Sentence Identifier

Abbreviations File ${PARAMETER HOME}/createTextUnits/de/AbbreviationsDE.txt
Full Stop Regex File ${PARAMETER HOME}/createTextUnits/de/FullStopRegexDE.txt
Replaced Full Stops Keep Asterisks for Tokenization

Text Units Layer Create or Replace Default Text Units Layer

Click the OK button to identify and separate altogether 9,254 sentences in DIAsDEM
documents. The Heuristic Sentence Identifier first replaces full stops in abbreviations
(e.g., “z.B.”) listed in Abbreviations File with asterisks. However, only abbreviations
are replaced that either occur at the beginning of the text or that follow one of certain
special characters (i.e., blank space and (),;:/-’"). Thereafter, regular expressions
contained in Full Stop Regex File are matched against the original text. These regular
expressions match full stops that are no sentence boundaries (e.g., “01.01.2002”) and
replace all matches with asterisks as well. These textual parameter files can be edited
to include additional domain knowledge.

Using, for example, the built-in, prototypical Tools → Miscellaneous → XML Doc-
ument Viewer, have a look at the content of DIAsDEM volume file ${PROJECT HOME}
/inputCollection/file10878.txt.xml. Its DIAsDEM document has been extended
by the new section <TextUnitsLayer>, which consists of two subsections. The elements
<OriginalTextUnit> of the subsection <OriginalTextUnits> mark up single, original

22

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

Figure 3.7: Create Text Units Dialog

sentences. Elements <ProcessedTextUnit> of subsection <ProcessedTextUnits> mark
up single, processed sentences. All sentences of the former subsection are retained un-
modified whereas the content of the latter subsection is modified by tasks performed
hereafter.

In general, the DIAsDEM framework supports multiple structural views on texts by
introducing the notion of a text units layer. For example, one might define three text
units layers to semantically annotate each document at the text level, at the paragraph
level, and at sentence level. However, DIAsDEM Workbench 2.2 does not fully support
nested semantic tagging of text documents. Instead, tasks always process text units
associated with the default layer and output accordingly tagged XML documents only.
In this case study, the default text units layer 0 provides a structural view on sentences
of each document. The index of the default text units layer is determined by the setting
of project property Index of Default Active Text Units Layer in DIAsDEM Documents.
It can be modified in the Project Properties tab of the Tools → Options dialog.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE DefaultDIAsDEMvolume SYSTEM "DefaultDIAsDEMvolume.dtd">

<DefaultDIAsDEMvolume NumberOfDocuments="1">

<DefaultDIAsDEMdocument NumberOfTextUnitsLayers="0"> ...

<TextUnitsLayer TextUnitsLayerID="0" TextUnitsDescription="Algorithm:

HEURISTIC_SENTENCE_IDENTIFIER">

<OriginalTextUnits>

<OriginalTextUnit TextUnitID="0" BeginIndex="0" EndIndex="55">Der

Handel mit Waren aller Art sowie Import und Export.</OriginalTextUnit>

... <OriginalTextUnit TextUnitID="2" BeginIndex="138" EndIndex="162">

Stammkapital: 50.000 DM.</OriginalTextUnit> ... <OriginalTextUnit

TextUnitID="9" BeginIndex="867" EndIndex="963"> Marion Marcella Adolph

23

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

geb. Priester, 22.03.1957, Offenbach, ist zur Geschäftsführerin

bestellt.</OriginalTextUnit> ...

</OriginalTextUnits>

<ProcessedTextUnits>

<ProcessedTextUnit TextUnitID="0">Der Handel mit Waren aller Art

sowie Import und Export.</ProcessedTextUnit> ... <ProcessedTextUnit

TextUnitID="2">Stammkapital: 50*000 DM.</ProcessedTextUnit> ...

<ProcessedTextUnit TextUnitID="9">Marion Marcella Adolph geb* Priester,

22*03*1957, Offenbach, ist zur Geschäftsführerin bestellt.

</ProcessedTextUnit> ...

</ProcessedTextUnits>

</TextUnitsLayer>

</DefaultDIAsDEMdocument>

</DefaultDIAsDEMvolume>

Asterisks that occur within the section <ProcessedTextUnits> either replace full
stops in an abbreviation listed in Abbreviations File (e.g., geb.) or full stops matched by
a regular expression in Full Stop Regex File. For example, the date literal 22.03.1957 is
matched by the expression ([0-9]{1,2})\.([\]*[0-9]{1,2})\.([\]*[0-9]{2,4}).
Therefore, the original date literal 22.03.1957 has been replaced by the corresponding
replacement string $1*$2*$3, which results in 22*03*1957.

Create Text Units: Summary

Task: Actions → Prepare Data Set → Create Text Units

Use Case: The user must pre-process imported texts as part of the DIAsDEM KDT
process for semantic tagging of domain-specific texts archives. Creating
text units is the mandatory pre-processing step 1 of 4.

Prerequisites: Texts must have been imported into the DIAsDEM collection.

Result: The specified text units layer of each document is created or replaced. Ele-
ments of the sections <OriginalTextUnits> and <ProcessedTextUnits>

mark up either single sentences (Heuristic Sentence Identifier) or the en-
tire text (Text as a Single Text Unit). If Create or Replace Default Text
Units Layer is enabled, an existing default layer is completely replaced.
Additionally, the project properties Default Collection File, Default Ab-
breviations File, and Default Full Stop Regex File are set and updated,
respectively.

Remarks: Creating text units is a prerequisite for the remaining mandatory pre-
processing steps 2 (i.e., tokenization) through 4 (i.e., lemmatization).
Take the following side effect into consideration: All asterisks that oc-
cur in imported texts are eventually replaced by full stops.

24

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

Create Text Units: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: project property Default Collection File

Text Unit Algorithm: If the recommended option Heuristic Sentence Identifier is en-
abled, this task heuristically identifies sentences terminated by full stops
for subsequent semantic annotation. If the option Text as a Single Text
Unit is enabled, the entire text is marked up as a single text unit. In the
latter case, the entire text is annotated by one XML tag only.

Abbreviations File: Valid local file name of existing file that contains known abbrevia-
tions in the format described in Subsection 4.3.1 on page 91; file extension:
.txt; default value: project property Default Abbreviations File

Full Stop Regex File: Valid local file name of existing file that contains regular expres-
sions in the format described in Subsection 4.3.1 on page 91; file extension:
.txt; default value: project property Default Full Stop Regex File

Replaced Full Stops: If the recommended option Keep Asterisks for Tokenization is en-
abled, asterisks that replace full stops are retained for usage in the subse-
quent tokenization phase. Otherwise, asterisks are replaced by full stops
before this task terminates.

Text Units Layer : If the recommended option Create or Replace Default Text Units
Layer is enabled, the default layer is created and replaced, respectively.
Otherwise, an additional text units layer is added to each document. Note,
the default text units layer index is determined by the project property
Index of Default Active Text Units Layer in DIAsDEM Documents.

3.2.6 Tokenizing Text Units

After creating text units, tokenizing them constitutes the second pre-processing step.
During tokenization, text units are decomposed into individual words and tokens, re-
spectively. In addition, text units are normalized to map, for example, date literals
appearing in many formats (e.g., “1 Jan 2003” and “1.1.2003”) onto a canonical repre-
sentation (e.g., “01.01.2003”). Moreover, multi-token terms that contain blank spaces
(e.g., “for example”) are identified to subsequently process them as single tokens. Select
Actions → Prepare Data Set → Tokenize Text Units and input the following parameters:

25

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Tokenize Regex File ${PARAMETER HOME}/createTextUnits/de/TokenizeRegexDE.txt
Normalize Regex File ${PARAMETER HOME}/createTextUnits/de/NormalizeRegexDE.txt
Multi-Token Words File ${PARAMETER HOME}/createTextUnits/de

/neex21/MultiTokenWordsDE.txt

Token Replacement File ${PARAMETER HOME}/createTextUnits/de/TokenReplacementDE.txt

Figure 3.8: Tokenize Text Units Dialog

Click on OK to tokenize and normalize text units, as well as to identify and replace
multi-token terms. All processing steps can be fully parameterized by editing regular
expressions or multi-token terms in the respective parameter files. The heuristic normal-
ization algorithm does not separate asterisks from their surrounding characters because
asterisks correspond to previously replaced full stops. Therefore, Tokenize Regex File
should not include regular expressions matching asterisks. Text units are normalized by
applying regular expressions and substituting matching sequences with the correspond-
ing replacement string. Furthermore, blank spaces in multi-token terms listed in Multi-
Token Words File (e.g., “for example”) are replaced by underscores (e.g., “for example”)
to create a single token. Moreover, the search and replace operations specified in Token
Replacement File are executed. For example, composite nouns (e.g., “Gewinnanstieg”)
could be split (e.g., “Gewinn Anstieg”), or English clitics (e.g., “wont” and “’ ll”) can
be expanded (e.g., “will not” and “will”). Finally, all asterisks that occur in the section
<ProcessedTextUnits> are replaced by full stops.

Check the content of file ${PROJECT HOME}/inputCollection/volume100878.xml:
Firstly, the section <ProcessedTextUnits> of this DIAsDEM document has been up-
dated. After tokenization, its elements <ProcessedTextUnit>mark up single, tokenized
and normalized sentences. Secondly, a section <RollbackTextUnits> has been added

26

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

to the default text units layer of each document. By executing Actions → Miscella-
neous → Rollback Processed Text Units, the content of <RollbackTextUnits> can be
copied into <ProcessedTextUnits> to undo the effects of one preceding task. Note,
DIAsDEM Workbench 2.2 supports three different rollback policy options: No backup
at all (0), rollback of the immediately preceding task (1, default setting), and rollback of
any preceding task (2). The active rollback policy is determined by the project property
Rollback Option (0, 1, 2) for ProcessedTextUnits in DIAsDEM Documents.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE DefaultDIAsDEMvolume SYSTEM "DefaultDIAsDEMvolume.dtd">

<DefaultDIAsDEMvolume NumberOfDocuments="1">

<DefaultDIAsDEMdocument NumberOfTextUnitsLayers="0"> ...

<TextUnitsLayer TextUnitsLayerID="0" TextUnitsDescription="Algorithm:

HEURISTIC_SENTENCE_IDENTIFIER"> ...

<ProcessedTextUnits>

<ProcessedTextUnit TextUnitID="0">Der Handel mit Waren aller Art sowie

Import und Export .</ProcessedTextUnit> ... <ProcessedTextUnit

TextUnitID="2">Stammkapital : 50000 DEM .</ProcessedTextUnit>

<ProcessedTextUnit TextUnitID="3">Gesellschaft_mit_beschränkter_Haftung

.</ProcessedTextUnit> ... <ProcessedTextUnit TextUnitID="9">Marion

Marcella Adolph geb. Priester , 22.03.1957 , Offenbach , ist zur

Geschäftsführerin bestellt .</ProcessedTextUnit> ...

</ProcessedTextUnits>

<RollbackTextUnits RollbackID="0">

<ProcessedTextUnit TextUnitID="0">Der Handel mit Waren aller Art

sowie Import und Export.</ProcessedTextUnit> ... <ProcessedTextUnit

TextUnitID="2">Stammkapital: 50*000 DM.</ProcessedTextUnit> ...

<ProcessedTextUnit TextUnitID="9">Marion Marcella Adolph geb* Priester,

22*03*1957, Offenbach, ist zur Geschäftsführerin bestellt.

</ProcessedTextUnit> ...

</RollbackTextUnits>

</TextUnitsLayer>

</DefaultDIAsDEMdocument>

</DefaultDIAsDEMvolume>

The task works as follows: Firstly, regular expressions listed in Tokenization Regex
File are matched against each processed text unit. For example, the character subse-
quence “e.” of the string “This is a sentence. There” is matched by the regular
expression (\S)(\.|\!|\?). This matching character subsequence is thus substituted by
the replacement string $1\ $2, which results in the following tokenized text: “This is

a sentence . There”. Secondly, regular expressions listed in Normalization Regex File
are matched against processed text units. Analogously, matching character subsequences
are substituted by the corresponding replacement string. Thirdly, multi-token terms in-
cluded in Multi-Token Words File are looked up in text units. Identified multi-token
terms are reduced to single tokens by replacing their inner blank spaces with underscores.

27

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

Fourthly, the token search and replace operations specified in Token Replacement File
are executed.

Tokenize Text Units: Summary

Task: Actions → Prepare Data Set → Tokenize Text Units

Use Case: The user must pre-process all imported texts as part of the DIAsDEM
KDT process for semantic tagging of domain-specific texts archives. To-
kenizing text units is mandatory pre-processing step 2 of 4.

Prerequisites: The default text units layer of each DIAsDEM document must contain
the section <ProcessedTextUnits>. Text units should have been created
in the DIAsDEM collection.

Result: Elements of the section <ProcessedTextUnits> mark up tokenized and
normalized text units. Inner blank spaces in multi-token terms have been
replaced with underscores, and all asterisks have been replaced with full
stops. Additionally, the project properties Default Collection File, Default
Normalize Regex File, Default Tokenize Regex File, Default Multi-Token
Words File, and Default Token Replacement File are set and updated,
respectively.

Tokenize Text Units: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: project property Default Collection File

Tokenize Regex File: Valid local file name of existing file that contains regular expres-
sions in the format described in Subsection 4.3.2 on page 92; file extension:
.txt; default value: project property Default Tokenize Regex File;

Normalize Regex File: Valid local file name of existing file that contains regular expres-
sions in the format described in Subsection 4.3.2 on page 92; file extension:
.txt; default value: project property Default Normalize Regex File

Multi-Token Words File: Valid local file name of existing file that contains multi-token
terms in the format described in Subsection 4.3.2 on page 92; file exten-
sion: .txt; default value: project property Default Multi-Token Words
File

Token Replacement File: Valid local file name of existing file that contains tokens to
be searched and replaced in the format described in Subsection 4.3.2 on
page 92; file extension: .txt; default value: project property Default To-
ken Replacement File

28

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

3.2.7 Replacing Named Entities with NEEX 2.1

After creating and tokenizing text units, identifying named entities and replacing them
with placeholders constitutes the third pre-processing step. Extracted named entities
might thereafter serve as attribute values in semantic XML tags. For example, “Karsten
Winkler” is an instance of named entity type “person”, and “Leipzig” instantiates the
named entity type “place”. Based on lists, regular expressions, and extraction rules, the
Named Entity Extractor of DIAsDEM Workbench 2.2 is capable of identifying instances
of many named entities types, among them “person”, “company”, “company relocation”,
“number”, “date”, “time”, “amount of money”, “paragraph”, “email”, “url”, “organiza-
tion id”, “document id”, “court”, “postal code”, “street”, “isin”, and “wkn”. Continue
by selecting Actions → Prepare Data Set → Replace Named Entities 2.1 and typing in
the following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Regex NE File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/

Case1234RegexNE.txt

Organization Indicators File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
OrganizationIndicatorsDE.txt

Organization Indicator Regex

Organization Suffixes File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
OrganizationSuffixesDE.txt

Organization Affixes File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
OrganizationAffixesDE.txt

Organizations File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
OrganizationsDE.txt

Organizations as Meta Data

Place Indicators File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
PlaceIndicatorsDE.txt

Places File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
PlacesDE.txt

Place Affixes File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
PlaceAffixesDE.txt

Person Name Indicators File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
PersonNameIndicatorsDE.txt

Titles File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
TitlesDE.txt

Forenames File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
ForenamesDE.txt

Middle Initials File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
MiddleInitialsDE.txt

Surnames File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
SurnamesDE.txt

29

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

Surname Suffixes File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
SurnameSuffixesDE.txt

Name Affixes File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
NameAffixesDE.txt

Professions File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
ProfessionsDE.txt

Street Exceptions File

Street Suffixes File

Street Prefix Token Regex

Street Affix Token Regex

Street Exclusion Token Regex

Min. Tokens in Street

Composite NE File ${PARAMETER HOME}/replaceNamedEntities/de/neex21/
Case1234CompositeNE.txt

Debugging Files Directory ${PROJECT HOME}/outputNeex21Files
Advanced Options Disabled: Extract Basic Named Entities of Type ‘Street’

Figure 3.9: Replace Named Entities 2.1 Dialog

Click the OK button to identify and replace named entities in processed text units.
Thereafter, open the file ${PROJECT HOME}/inputCollection/volume100878.xml. The
default text units layer of its DIAsDEM document has been extended by the new section
<NamedEntities> whose elements <NamedEntity> mark up extracted named entities.
Elements of the section <ProcessedTextUnits> now mark up tokenized and normal-
ized sentences, which optionally contain named entity placeholders. Each placeholder
tag <NeRef> references its associated named entity in section <NamedEntity> via the
attribute NeID. Note, the section <RollbackTextUnits> has also been updated. Hence,
you might undo the effects of the performed named entity extraction task, if necessary.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE DefaultDIAsDEMvolume SYSTEM "DefaultDIAsDEMvolume.dtd">

30

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

<DefaultDIAsDEMvolume NumberOfDocuments="1">

<DefaultDIAsDEMdocument NumberOfTextUnitsLayers="0"> ...

<TextUnitsLayer TextUnitsLayerID="0" TextUnitsDescription="Algorithm:

HEURISTIC_SENTENCE_IDENTIFIER"> ...

<ProcessedTextUnits>

<ProcessedTextUnit TextUnitID="0">Der Handel mit Waren aller Art sowie

Import und Export .</ProcessedTextUnit> ... <ProcessedTextUnit

TextUnitID="2">Stammkapital : <NeRef NeID="0" /> .</ProcessedTextUnit>

<ProcessedTextUnit TextUnitID="3">Gesellschaft_mit_beschränkter_Haftung

.</ProcessedTextUnit> ... <ProcessedTextUnit TextUnitID="9"><NeRef

NeID="16" />, ist zur Geschäftsführerin bestellt .</ProcessedTextUnit> ...

</ProcessedTextUnits> ...

<NamedEntities>

<NamedEntity NeID="0" NeType="amount_of_money">50000 DEM</NamedEntity> ...

<NamedEntity NeID="12" NeType="date">22.03.1957</NamedEntity>

<NamedEntity NeID="13" NeType="place">Offenbach</NamedEntity>

<NamedEntity NeID="14" NeType="person_name">Marion Marcella Adolph

</NamedEntity>

<NamedEntity NeID="15" NeType="person_name">Priester</NamedEntity>

<NamedEntity NeID="16" NeType="person">16|null|person|null|Marion

Marcella Adolph|null|null|Priester|22.03.1957|null|null|null|Offenbach

|null|null</NamedEntity>

</NamedEntities>

</TextUnitsLayer>

</DefaultDIAsDEMdocument>

</DefaultDIAsDEMvolume>

NEEX 2.1 can be fully parameterized by editing the corresponding parameter files.
The heuristic Named Entity Extractor of DIAsDEM Workbench 2.2 works as follows:

1. Firstly, regular expressions listed in the parameter file Regex NE File are matched
against intermediate text units to identify instances of the following named entities
types, which are referred to as basic named entities: “number”, “date”, “time”,
“amount of money”, “paragraph”, “email”, “url”, “organization id”, “document
id”, “court”, “postal code”, “reference number”, “percentage”, “newspaper”, “wkn”
(i.e., German securities identification number), “isin” (i.e., international securities
identification number), “stock exchange”, “number of shares”, and “amount of
money per share”.

2. Secondly, instances of the basic named entity type “organization” are identified by
employing the parameter files Organization Indicators File, Organization Suffixes
File, Organization Affixes File, and Organizations File. The latter file contains a
list of complete, tokenized names of important organizations that are extracted in
any case. To heuristically extract less important organization names, the algorithm
initially searches for known organization name suffix tokens (e.g., “Ltd.”) and
then looks backwards for valid organization indicator tokens, such as “takeover

31

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

of”, to instantiate a named entity of type “organization”. Subsequently, identified
organization names are extended if they are followed by organization name affix
tokens (e.g., “Worldwide”) listed in the respective parameter file.

3. Thirdly, tokens or sequences thereof instantiating the basic named entity type
“place” are extracted using the parameter files Place Indicators File, Places File,
and Place Affixes File. The algorithm first looks up all tokens in the dictionary
of known places comprising, for example, countries like “Germany” and cities like
“Berlin”. Subsequently, place candidate tokens are extended if they are immedi-
ately followed by another known place or a place affix token, such as “Airport”.
However, even place candidates are only instantiated as named entities of type
“place” if they are directly preceded by a known place indicator token, such as
“in” or “to”.

4. Thereafter, the parameter files Person Name Indicators File, Titles File, Fore-
names File, Middle Initials File, Surnames File, Surname Suffixes File, and Name
Affixes File are used to discover instances of the basic named entity “person name”.
Each instance corresponds to a contiguous sequence of tokens, each of which in-
stantiates one of the following basic named entity types: academic “title” (e.g.,
“Dr.”), “forename”, “middle initial”, “surname”, or “name affix” (e.g., “Sen.”).
Composite forenames and surnames comprising a hyphen are also identified. Per-
son name candidates are extended if they are immediately followed by a known
name affix token or a capitalized token ending with a known surname suffix listed
in Surname Suffixes File. However, single-token person name candidates are only
instantiated if they are directly preceded by a person name indicator token con-
tained in the respective parameter file. If the optional parameter Professions File
is specified, instances of basic named entity type “profession” are identified in text
units that contain at least one instance of named entity type person name.

5. Constructor rules, which are specified in a workbench-specific syntax in the param-
eter file Composite NE File, are finally applied to intermediate text units that con-
tain identified basic named entities to discover instances of the following compos-
ite named entities: “person”, “company”, “company relocation”, “date period”,
“amount of money range”, “percentage range”, “equity stake”, “unit of company”,
and “key figure”. Each composite named entity consists of basic named entities
that occur in the context of tokens defined by constructor rules. For instance, com-
posite named entities of type “person” can be constructed from the basic named
entities “person name”, “date”, and “place”. If a composite named entity is identi-
fied, both ordinary tokens and basic named entity placeholders matched by the rule
are substituted by the corresponding composite named entity placeholder. Adding
the exemplary rule “<<person name>> geb. <<person name>> , <<date>> ,
<<place>>” to match tokens and instances of basic named entities along with

32

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

an appropriate constructor statement to Composite NE File maps, for instance,
the German token sequence “Marion Marcella Adolph geb. Priester , 22.03.1957 ,
Offenbach” onto an instance of the composite named entity type “person”.

In general, each token might simultaneously instantiate various basic named entities.
For instance, the token "Hagen" could be a German forename or a German city. Thus,
various heuristics are used in conjunction with the parameter files Person Name In-
dicators File and Place Indicators File to decide whether a particular token probably
instantiates a “place” or is more likely a partial “person name”.

Replace Named Entities 2.1: Summary

Task: Actions → Prepare Data Set → Replace Named Entities 2.1

Use Case: The user must pre-process all imported texts as part of the DIAsDEM
KDT process for semantic tagging of domain-specific texts archives. Iden-
tifying and replacing named entities is the mandatory pre-processing step
3 of 4.

Prerequisites: The default text units layer of each DIAsDEM document must contain the
section <ProcessedTextUnits>. Elements <ProcessedTextUnit> must
not contain previously inserted named entity references <NeRef>. Text
units should have been created and tokenized in the DIAsDEM collection.

Result: Elements of section <ProcessedTextUnits> mark up text units contain-
ing placeholders for extracted named entities. The named entities are
stored in elements <NamedEntity> of section <NamedEntities>. Addi-
tionally, the project properties that represent default values of input pa-
rameters are set and updated on request, respectively.

Replace Named Entities 2.1: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: project property Default Collection File

Regex NE File: Valid local file name of existing file that contains regular expressions
for identifying basic named entities (e.g., of type “amount of money”) in
the format described in Subsection 4.3.3 on page 94; file extension: .txt;
default value: project property NEEX 2.1: Default Regex NE File

Organization Indicators File: Valid local file name of existing file that contains terms
that frequently precede organization names (e.g., “acquired”) in the for-
mat described in Subsection 4.3.3 on page 94; file extension: .txt; default
value: project property NEEX 2.1: Default Organization Indicators File

33

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

Organization Indicator Regex : Optional input parameter comprising a syntactically valid
regular expression (e.g., \d+\)) that matches organization indicator to-
kens, such as enumerations like “1)” and “2)”; default value: project prop-
erty NEEX 2.1: Default Organization Indicator Regex

Organization Suffixes File: Valid local file name of existing file that contains a list of
organizational abbreviations (e.g., “Corp.” or “AG”) in the format de-
scribed in Subsection 4.3.3 on page 94; file extension: .txt; default value:
project property NEEX 2.1: Default Organization Suffixes File

Organization Affixes File: Valid local file name of existing file that contains a list of
terms that frequently follow organization suffixes as part of organization
names (e.g., “Import and Export”) in the format described in Subsec-
tion 4.3.3 on page 94; file extension: .txt; optional parameter; default
value: project property NEEX 2.1: Default Organization Affixes File

Organizations File: Valid local file name of existing file that contains a list of com-
plete, tokenized organization names (e.g., “Foo and Partners Ltd.”) in
the format described in Subsection 4.3.3 on page 94; file extension: .txt;
optional parameter; default value: project property NEEX 2.1: Default
Organizations File

Organizations as Meta Data: Valid name of metadata attribute in DIAsDEM docu-
ments whose values store exactly one complete, tokenized organization
name (e.g., “TokenizedNameOfPublishingCompany”); optional parame-
ter; default value: project property NEEX 2.1: Default Organizations
Meta Data Attribute in DIAsDEM Documents

Place Indicators File: Valid local file name of existing file that contains terms that fre-
quently precede places (e.g., “in” or “to”) in the format described in Sub-
section 4.3.3 on page 94; file extension: .txt; optional parameter; default
value: project property NEEX 2.1: Default Place Indicators File

Places File: Valid local file name of existing file that contains a list of places (i.e., cities)
in the format described in Subsection 4.3.3 on page 94; file extension:
.txt; default value: project property NEEX 2.1: Default Places File

Place Affixes File: Valid local file name of existing file that contains a list of terms that
frequently follow places (e.g., districts and names of rivers) as part of
the place name in the format described in Subsection 4.3.3 on page 94;
file extension: .txt; optional parameter; default value: project property
NEEX 2.1: Default Place Affixes File

34

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

Person Name Indicators File: Valid local file name of existing file that contains terms
that frequently precede person names (e.g., “Mr.” or “with”) in the
format described in Subsection 4.3.3 on page 94; file extension: .txt;
optional parameter; default value: project property NEEX 2.1: Default
Person Name Indicators File

Titles File: Valid local file name of existing file that contains a list of academic and
professional titles (e.g., “Prof.” or “Prof. Dr.”) in the format described
in Subsection 4.3.3 on page 94; file extension: .txt; default value: project
property NEEX 2.1: Default Titles File

Forenames File: Valid local file name of existing file that contains a list of forenames in
the format described in Subsection 4.3.3 on page 94; file extension: .txt;
default value: project property NEEX 2.1: Default Forenames File

Middle Initials File: Valid local file name of existing file that contains a list of middle
initials (e.g., “von”, “de la” or “A.”) in the format described in Subsec-
tion 4.3.3 on page 94; file extension: .txt; default value: project property
NEEX 2.1: Default Middle Initials File

Surnames File: Valid local file name of existing file that contains a list of surnames in
the format described in Subsection 4.3.3 on page 94; file extension: .txt;
default value: project property NEEX 2.1: Default Surnames File

Surname Suffixes File: Valid local file name of existing file that contains a list of fre-
quent surname suffixes (e.g., “wicz” or “ova”) in the format described in
Subsection 4.3.3 on page 94; file extension: .txt; default value: project
property NEEX 2.1: Default Surname Suffixes File

Name Affixes File: Valid local file name of existing file that contains a list of terms that
frequently follow person names (e.g., “Ph.D.” or “jr.”) as part of the
name in the format described in Subsection 4.3.3 on page 94; file exten-
sion: .txt; optional parameter; default value: project property NEEX
2.1: Default Name Affixes File

Professions File: Valid local file name of existing file that contains a list of professions
(e.g., “CEO” or “President”) that should be associated with person names
in the format described in Subsection 4.3.3 on page 94; file extension:
.txt; optional parameter; default value: project property NEEX 2.1: De-
fault Professions File

Composite NE File: Valid local file name of existing file that contains NEEX-specific
rules for instantiating composite named entities of type “person”, “com-
panies”, and “company relocation” in the format described in Subsec-

35

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

tion 4.3.3 on page 94; file extension: .txt; default value: project property
NEEX 2.1: Default Composite NE File;

Debugging Files Directory : Valid local file name of existing directory for storing debug-
ging files created by NEEX 2.1; optional parameter; default value: project
property NEEX 2.1: Default Directory of Debugging HTML Files;

Advanced Options: If the option Extract Basic Named Entities of Type ‘Street’ is en-
abled, instances of basic named entity type “street” are identified. The
option Determine Canonical Forms of Named Entities cannot be enabled
because NEEX 2.1 does not support this operation.

3.2.8 Lemmatizing Text Units

Lemmatization of terms is the final text pre-processing step. During this step, grammat-
ical roots of terms (i.e., their lemma forms) are determined, and terms are replaced with
their lemma forms. For example, inflected verb forms (e.g., “went”) are mapped onto
their respective infinite forms (e.g., “go”). This pre-processing step drastically reduces
the number of distinct terms occurring in a collection. Hence, lemmatization also facili-
tates both the establishment and the usage of domain-specific thesauri that are required
by DIAsDEM Workbench for controlled dimension reduction.

DIAsDEM Workbench supports two distinct methods of creating lemma forms. They
can either be automatically determined by TreeTagger, or each term can be looked up
in a user-supplied list of known lemma forms. TreeTagger is a multilingual part-of-
speech tagger developed by Helmut Schmid [Sch94]. As of August 2007, TreeTagger for
Linux and Solaris can be used for evaluation and research purposes free of charge. Using
TreeTagger is the preferred method of lemmatization. However, the list-based method
of determining lemma forms is applied in this case study to avoid any problems with
installing the part-of-speech tagger. In contrast to ‘real’ part-of-speech tagging, this
lexicon-based method has a main disadvantage: Lemma forms can only be determined
for terms whose grammatical root forms are listed in the file of known lemma forms.
Additionally, the syntactical context of term occurrences is not taken into consideration.
Select Actions → Prepare Data Set → Lemmatize Text Units and type in the following
parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Lemmatization Algorithm Look Up Lemma Form in List

TreeTagger Input File

TreeTagger Output File

Known Lemma Forms ${PARAMETER HOME}/lemmaForms/de/Case1LemmaForms.txt

36

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

Unknown Lemma Forms ${PARAMETER HOME}/lemmaForms/de/NewLemmaForms.txt
Advanced Options Disabled: Create New Known Lemma Forms File

Disabled: Append Part of Speech Tag to Each Token

Figure 3.10: Lemmatize Text Units Dialog

Click the OK button to start lemmatizing text units. Thereafter, check the con-
tent of the file ${PROJECT HOME}/inputCollection/volume100878.xml: The section
<ProcessedTextUnits> of this DIAsDEM document has been updated. After lemma-
tization, its elements <ProcessedTextUnit> mark up lemma forms and named entity
placeholders of identified text units. Furthermore, the section <RollbackTextUnits>

has been updated to enable a rollback of this task.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE DefaultDIAsDEMvolume SYSTEM "DefaultDIAsDEMvolume.dtd">

<DefaultDIAsDEMvolume NumberOfDocuments="1">

<DefaultDIAsDEMdocument NumberOfTextUnitsLayers="0"> ...

<TextUnitsLayer TextUnitsLayerID="0" TextUnitsDescription="Algorithm:

HEURISTIC_SENTENCE_IDENTIFIER"> ...

<ProcessedTextUnits>

<ProcessedTextUnit TextUnitID="0">d Handel mit Ware alle Art sowie

Import und Export .</ProcessedTextUnit> ... <ProcessedTextUnit

TextUnitID="2">Stammkapital : <NeRef NeID="0" /> .</ProcessedTextUnit>

<ProcessedTextUnit TextUnitID="3">Gesellschaft_mit_beschränkter_Haftung

.</ProcessedTextUnit> ... <ProcessedTextUnit TextUnitID="9"><NeRef

NeID="16" />, sein zur Geschäftsführerin bestellen .</ProcessedTextUnit> ...

<ProcessedTextUnit TextUnitID="11">nicht eintragen : d Bekanntmachung d

Gesellschaft erfolgen im Bundesanzeiger .</ProcessedTextUnit>

</ProcessedTextUnits> ...

</TextUnitsLayer>

</DefaultDIAsDEMdocument>

</DefaultDIAsDEMvolume>

37

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

Note, the list of known lemma forms had been created using TreeTagger. In the file
shown above, the inflected verb form “ist” now occurring in <RollbackTextUnit> has
been mapped onto its infinitive form “sein” in the section <ProcessedTextUnit>. If
TreeTagger is unable to determine the grammatical root form for a term, its lemma
form simply equals the original term.

During the iterative clustering phase, text unit vectors are clustered based on content
similarity to discover semantic XML tags. Text unit vectors are created by mapping
elements of the section <ProcessedTextUnits> onto vectors. Thereby, vector dimensions
correspond to so-called text units descriptors that are defined in a domain-specific and
case-sensitive thesaurus. Consequently, thesauri should contain case-sensitive lemma
forms of descriptor and non-descriptor thesaurus terms because they truly occur in the
section <ProcessedTextUnits> only.

Lemmatize Text Units: Summary

Task: Actions → Prepare Data Set → Lemmatize Text Units

Use Case: The user must pre-process all imported texts as part of the DIAsDEM
KDT process for semantic tagging of domain-specific texts archives. Cre-
ating lemma forms is the mandatory pre-processing step 4 of 4.

Prerequisites: The default text units layer of each DIAsDEM document must contain
the section <ProcessedTextUnits>. Text units should have been created
and tokenized in the DIAsDEM collection. Named entities should have
been replaced with placeholders in all text units. If Use TreeTagger to
Determine Lemma Form is enabled, the absolute file name of the respec-
tive TreeTagger start script (e.g., /.../tree-tagger-german) must be
entered in the External Programs tab of the Tools → Options dialog.

Result: Elements of section <ProcessedTextUnits> mark up text units contain-
ing lemma forms and named entity placeholders. Additionally, the project
properties Default Collection File, Default TreeTagger Input File, Default
TreeTagger Output File, Default Known Lemma Forms File, and Default
Unknown Lemma Forms File are set and updated, respectively.

Lemmatize Text Units: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: project property Default Collection File

Lemmatization Algorithm: If Use TreeTagger to Determine Lemma Form is enabled,
the external part-of-speech tagger is employed. In this case, TreeTagger

38

3 Case Study – 3.2 Text Pre-Processing in the KDT Phase

must have been successfully installed and the absolute file name of the re-
spective TreeTagger start script (e.g., /.../tree-tagger-german) must
be entered in the External Programs tab of the Tools → Options dia-
log. If Look Up Lemma Form in List is enabled, a list of a priory known
grammatical root forms (i.e., Known Lemma Forms) is utilized.

TreeTagger Input File: Must be set if Use TreeTagger to Determine Lemma Form is
enabled; valid local file name of new or existing file that is replaced; this
temporary file is created by DIAsDEM Workbench and includes text to
be POS-tagged by TreeTagger; file extension: .txt; default value: project
property Default TreeTagger Input File

TreeTagger Output File: Must be set if Use TreeTagger to Determine Lemma Form is
enabled; valid local file name of new or existing file that is replaced;
this temporary file is created by TreeTagger and includes the results of
POS-tagging; file extension: .txt; default value: project property Default
TreeTagger Output File

Known Lemma Forms: Must be set if Look Up Lemma Form in List is enabled; valid
local file name of existing file that contains terms along with their lemma
forms in the format described in Subsection 4.3.5 on page 102; file exten-
sion: .txt; default value: project property Default Known Lemma Forms
File

Unknown Lemma Forms: Must be set if Look Up Lemma Form in List is enabled; valid
local file name of existing file that is created or extended by DIAsDEM
Workbench; includes terms occurring in the collection that are not listed
in Known Lemma Forms as well as the context of their occurrence (i.e.,
the sentence); can be used to update Known Lemma Forms; format de-
scribed in Subsection 4.3.5 on page 102; file extension: .txt; default
value: project property Default Unknown Lemma Forms File

Advanced Options: If Create New Lemma Forms File is enabled along with Use TreeTag-
ger to Determine Lemma Form, all terms and the corresponding lemma
forms determined by TreeTagger are saved for later usage as a file of
Known Lemma Forms. If Append Part of Speech Tag to Each Token is
enabled, each token is appended by its POS tag. When semantically
marking up text ducuments, it is recommended to disable this option.

39

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

3.3 Iterative Clustering in the KDT Phase

3.3.1 Computing Term Frequency Statistics

During the clustering phase, DIAsDEM Workbench requires a controlled vocabulary in
the form of a domain-specific thesaurus. Text units are mapped onto vectors whose di-
mensions correspond to thesaurus descriptors. Computing term frequency (TF) statistics
for a collection is the first step in establishing or updating a thesaurus for subsequent use
in clustering. Term frequency statistics give an insight into the specific word frequency
distribution prevalent in a certain document collection. Based on term frequency statis-
tics, an initial thesaurus can either be created or an existing thesaurus can be updated
by adding, editing, or removing terms of interest. Although there exists a prepared the-
saurus for this case study, creating and inspecting term frequency statistics is described
in this tutorial for the sake of completeness. Therefore, select Actions → Understand
Domain → Compute Term Frequency Statistics and provide the following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
TF Statistics File ${PROJECT HOME}/termFrequencies.dtf
Advanced Options Enabled: Export Original Texts in CSV Format

Enabled: Export Term Frequency Statistics in CSV Format

Enabled: Export Term Frequency Statistics in HTML Format

Enabled: Exclude Numbers, Dates and NE Placeholders

Disabled: Compute Conditional Term Frequency Statistics

Disabled: If Possible, Map Tokens onto Text Unit Descriptors

Figure 3.11: Compute Term Frequency Statistics Dialog

Click on OK to compute term frequency statistics. Thereafter, check the content of
the directory ${PROJECT HOME}, which now contains the DIAsDEM-specific term fre-

40

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

quency statistics file termFrequencies.dtf. It can be opened using Tools → Term
Frequency Statistics Viewer. Moreover, this directory contains term frequency statis-
tics in CSV (termFrequencies.csv) and HTML (termFrequencies.html) format, re-
spectively. Due to the settings of advanced options, all original texts of this col-
lection have also been exported into the CSV files termFrequencies.orig.csv and
termFrequencies.proc.csv. The former contains file names of input documents and
the original texts as stored in section <OriginalText>. In contrast, the latter file con-
tains processed texts (i.e., the content of the section <ProcessedTextUnits>) along with
their input file names. Both export files can be input to further text analysis and text
mining activities employing third-party software. According to the parameter settings,
numbers, date literals, named entity placeholders, and other tokens that do not contain
at least one letter are excluded from the term frequency statistics. The disabled options
to compute conditional term frequency statistics and to utilize a thesaurs are beyond
the scope of this case study.

Compute Term Frequency Statistics: Summary

Task: Actions → Understand Domain → Compute Term Frequency Statistics

Use Case: The user wants to analyze the term frequency distribution prevalent in
a document collection to get insight into the particularities of its spe-
cific vocabulary. Additionally, the user might want to create an initial,
collection-specific thesaurus or may want to edit an existing thesaurus
based on term frequencies.

Prerequisites: The default text units layer of each DIAsDEM document must contain
the section <ProcessedTextUnits>. Text units should have been created
and tokenized in the DIAsDEM collection and named entities should have
been replaced with placeholders in all text units.

Result: TF Statistics File contains the absolute frequencies of single- and multi-
token terms that occur in the section <ProcessedTextUnits> of DIAs-
DEM documents in collection Collection File. Additionally, the project
properties Default Collection File and Default Word Statistics File are
set and updated, respectively.

Remarks: The section <ProcessedTextUnits> should contain lemmatized text units
in case of computing TF statistics for thesaurus establishment or update
because only lemmatized text units should be mapped onto vectors for
subsequent clustering. Thesauri to be employed by DIAsDEM Workbench
should include lemma forms of both descriptors and non-descriptors only.

41

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Compute Term Frequency Statistics: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: project property Default Collection File

TF Statistics File: Valid local file name of new or existing file that is created or replaced
by DIAsDEM Workbench; file extension: .dtf; default value: project
property Default Word Statistics File

Advanced Options: If Export Original Texts in CSV Format is enabled, two CSV files
are created in ${PROJECT HOME} that contain the file name and the tex-
tual content of each document. If Export Term Frequency Statistics in
CSV Format is enabled, a CSV file is created in ${PROJECT HOME} that
contains all terms and the respective absolute frequencies. If Export Term
Frequency Statistics in HTML Format is enabled, an HTML file is created
in ${PROJECT HOME} that lists terms and their absolute frequencies. To-
kens that do not contain at least one letter are excluded from TF statistics
if Exclude Numbers, Dates and NE Placeholders is enabled.

3.3.2 Viewing Term Frequency Statistics

Select Tools → Term Frequency Statistics Viewer to open the new term frequency statis-
tics file. Click on Open Statistics and choose the file ${PROJECT HOME}/termFrequencies
.dtf. After entering the minimum frequency of terms to be displayed (e.g., 5), terms
are shown in the left pane, as illustrated in Figure 3.12. Term frequency statistics can
either be sorted by decreasing frequency or by ascending term. To sort the list of terms
in the left pane, click the buttons Sort by Freq. and Sort by Term, respectively.

Figure 3.12: Term Frequency Statistics Viewer of DIAsDEM Workbench 2.2

42

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Terms appearing in the left pane can be compared with an existing DIAsDEM-specific
thesaurus file. To proceed, click the Open Thesaurus button and select the thesaurus
file ${PARAMETER HOME}/thesauri/de/Case123Thesaurus.dth. As illustrated in Fig-
ure 3.13, the entire thesaurus is initially displayed in the right pane. Each line corre-
sponds to one thesaurus term that can either be a descriptor or a non-descriptor that
references its associated descriptor term.

Figure 3.13: Term Frequency Statistics Viewer of DIAsDEM Workbench 2.2

Thesaurus entry Ablehnung (D; Case2) corresponds to the descriptor (“D”) term
“Ablehnung”, which is a valid text unit descriptor in case study 2 only. Note again,
valid text unit descriptors correspond to dimensions of text unit vectors to be clustered
subsequently. According to thesaurus entry <<person>> (D; Case1), named entity
type “person” is a valid descriptor in case study 1. For each identified instance of named
entity type “person” in a text unit, the respective descriptor counter is incremented.
Finally, thesaurus entry beginnen (N; Beginn) states that the non-descriptor (“N”)
term “beginnen” is mapped onto its descriptor term “Beginn”. If the term “beginnen”
occurs in a text unit, the counter of its descriptor term “Beginn” is thus incremented.
However, the descriptor Beginn (D; Case1) is a valid descriptor in case study 1 only.

Click the Incl. button in the right pane to filter term frequency statistics of terms
that are also descriptor or non-descriptor thesaurus terms. In this case, the collection-
specific term frequency is also shown for each thesaurus term in the right pane. Click
the Excl. button to filter term frequency statistics of terms that are not contained in
the thesaurus. Frequently occurring and semantically important terms, which are not
listed in the thesaurus, are candidates for thesaurus updates. In contrast, infrequently
occurring terms might be removed from the thesaurus to reduce the dimensionality of
text units vectors. However, concepts such as “Tätigkeit” should not be deleted if they
are more general descriptor terms for many, less frequently occurring non-descriptors.
Note, specific named entity placeholders (e.g., <<0>>) should not be included in any

43

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

thesaurus because they might replace instances of various named entity types, such as
“person” or “date”.

After analyzing term frequency statistics, you might consider to add the frequently
occurring term “Bundesanzeiger” as a descriptor to the thesaurus. Moreover, the rather
frequent term “Bauvorhaben” should be a non-descriptor term pointing to the important
descriptor “Tätigkeit”. Additionally, thesaurus term “Aktionär” should be removed due
to its infrequent occurrence in the collection. Thesaurus updates are explained in the
next subsection. Therefore, do not close Term Frequency Statistics Viewer yet.

3.3.3 Editing Domain-Specific Thesauri

DIAsDEM Workbench includes two German thesauri in ${PARAMETER HOME}/thesauri/
de. They contain application-specific vocabularies for case studies related to Commercial
Register entries and corporate news, respectively. Thesauri, which should be employed
in different application domains, can be created by Actions → Understand Domain →
Establish Initial Thesaurus, as described in Subsection 3.6.2. However, the remainder
of this section focuses on the process of updating an existing, DIAsDEM-specific the-
saurus by adding, editing, and removing terms. Select Tools → Thesaurus Editor 2.2,
click on Open, and select the thesaurus file Case123Thesaurus.dth in the directory
${PARAMETER HOME}/thesauri/de.

Figure 3.14: Thesaurus Editor 2.2 of DIAsDEM Workbench 2.2

To add the first new term, click on New and enter “Bundesanzeiger” in the appearing
dialog. You might use the system clipboard to transfer textual content, for example,
from Term Frequency Statistics Viewer to Thesaurus Editor 2.2. Using the mouse,
select the term “Bundesanzeiger” in Term Frequency Statistics Viewer. The highlighted
text can be copied into the clipboard by the keyboard shortcut CTRL-C. Afterwards,
the clipboard content can be pasted into other documents by placing the cursor at the

44

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

desired position and using the keyboard shortcut CTRL-V. Moreover, the keyboard
shortcut CTRL-X can be used to cut (i.e., to remove) selected text from the source
document after copying it to the clipboard.

Each thesaurus term must either be a descriptor or a non-descriptor that references an
associated term. Due to its frequent occurrence and semantic importance, the German
word “Bundesanzeiger” should be a text unit vector dimension and must thus be a
descriptor. Therefore, set the attribute value Type of Term to Descriptor. The content
of the field Scope Notes can be used to limit the number of valid descriptors during
the process of vectorizing text units. The term “Bundesanzeiger” should be a valid
descriptor in the first case study only. Thus, case-sensitively enter “Case1” in the field
Scope Notes. Finally, the new term is added to the current thesaurus by clicking on OK.
Otherwise, click the Cancel button to discard any modifications of the selected term.
Figure 3.14 depicts Thesaurus Editor 2.2 after committing the insertion of the new term
“Bundesanzeiger”.

Figure 3.15: Thesaurus Editor of DIAsDEM Workbench 2.2

Insert the second new term “Bauvorhaben” into the thesaurus and set its Type of
Term to Non-Descriptor. For each non-descriptor, an associated descriptor must be
specified in the field Use Descriptor. Hence, type in the descriptor term “Tätigkeit” in
this field. Note, the Use Descriptor field must contain an existing text unit descriptor
or another non-descriptor that in turn provides a reference to the relevant text unit
descriptor in the same thesaurus. As before, input “Case1” in the field Scope Notes as
well. Figure 3.15 illustrates Thesaurus Editor 2.2 after committing the insertion of the
term “Bauvorhaben”.

Existing terms, such as “Bundesanzeiger” and “Bauvorhaben”, can be modified by
selecting the table row of the term to be modified and subsequently clicking the Edit
button. Alternatively, select the table row of the term to be modified, right-click the
row, and select Edit Selected Term from the context menu. Analogously, terms can be

45

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

removed from the thesaurus. However, make sure not to delete descriptor terms that are
referenced by remaining non-descriptors. Finally, remove the German term “Aktionär”
because it occurs only once in the entire collection of Commercial Register entries.

Click the Info button and look at the brief thesaurus summary that lists the number of
terms, descriptors, and non-descriptors in the opened thesaurus. The case-specific the-
saurus should now include 127 descriptor and 104 non-descriptor terms. Keep in mind
that the number of descriptors should be kept as low as possible because DIAsDEM
Workbench does not employ uncontrolled techniques for dimensionality reduction (e.g.,
singular value decomposition). As a rule of thumb, the number of descriptors should
not exceed 250 terms. Click the Save button to commit the previous thesaurus updates.
After saving, inspect the content of the directory ${PARAMETER HOME}/thesauri/de. In
addition to updating the DIAsDEM-specific thesaurus file, saving a thesaurus always
results in the creation of thesaurus files in CSV and HTML format in the same direc-
tory. The latter contains information about all thesaurus terms and an explicit mapping
of descriptors onto their associated non-descriptors. Finally, click the respective Exit
buttons to close both Thesaurus Editor 2.2 and Term Frequency Statistics Viewer.

3.3.4 Vectorizing Text Units in Iteration 1

Concerning the clustering of text unit vectors, DIAsDEM Workbench implements both a
plug-in and a plug-out concept, which enables the usage of various clustering algorithms.
Users can employ three built-in Weka [WF05] clustering algorithms (i.e., k-means, Cob-
web and EM), five clustering algorithms implemented within the Weka framework by
the author (i.e., simple and bisecting k-means, Kohonen’s Batch Map algorithm, Jarvis/
Patrick SNN clustering, as well as Ertöz/Steinbach/Kumar SNN clustering), or utilize
algorithms supplied by external data mining applications. To ensure this flexibility,
DIAsDEM Workbench is capable of exporting text unit vector files in four different
formats. As the k-means clustering algorithm provided by the Java-based data mining
library Weka is employed is this case study, vectors are exported in the Weka-specific
ARFF format only. However, all four formats are briefly described in Subsection 4.4.1
on page 104. To export text unit vectors for the first clustering iteration, select Actions
→ Prepare Data Set → Vectorize Text Units 2.2 and enter the following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
KDT Process Iteration 1

Text Unit Vectors Format ARFF: Weka Data Mining Project

Text Unit Vectors File ${PROJECT HOME}/1vectors.arff
Thesaurus File ${PARAMETER HOME}/thesauri/de/Case123Thesaurus.dth
Text Unit Descriptors Descriptors whose Scope Notes Contain String

Case1

46

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Descriptor Frequency Boolean Descriptor Frequency

Collection Frequency Inverse Collection Frequency: Create New File

Collection Frequencies File ${PROJECT HOME}/1weights.dcfq
Length Normalization No Length Normalization

Advanced Options Disabled: Create File for Mining Descriptor Association Rules

Enabled: Create Metadata File for Text Unit Vectors File

Figure 3.16: Vectorize Text Units 2.2 Dialog

Click the OK button to export text unit vectors according to these parameter settings.
In the first clustering iteration, processed text units in section <ProcessedTextUnits>

are mapped onto their vector representations. Let D be the set of descriptors. The
dimensionality of text unit vectors corresponds to |D| = 73 descriptors in thesaurus file
Case123Thesaurus.dth that contain the string “Case1” in their respective scope notes.

Mapping text units onto text unit vectors works as follows: Firstly, a boolean vector is
created for each text unit. Each vector component i = 1, . . . , |D| represents the boolean
term frequency of descriptor di in the text unit. Vector component i is 1 if descriptor
di occurs in the corresponding text unit or 0 otherwise. Secondly, boolean vectors are
weighted by multiplying each vector component i and the inverse document frequency
of descriptor di. Let U be the set of text units in the collection and let freq(di) be
the absolute frequency of descriptor di in the same collection. The inverse document
frequency of descriptor di is here defined as log(|U |/freq(di)). This weighting schema
favors terms that occur in relatively few text units because these terms have a higher
discriminative power than terms occurring in almost all text units. Length normalization
is not performed as text units do not vary in length. To sum up, vector component i
represents the product of boolean term frequency of descriptor di in the corresponding
sentence and inverse document frequency of descriptor di within the entire collection.
Open the metadata file ${PROJECT HOME}/1vectors.arff.meta that lists the descriptor
frequency and the inverse document frequency for each descriptor:

47

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

...

D1_Aktie = Aktie; Descriptor Frequency = 37; Descriptor Weight = 5.5

D2_Gesellschafter = Gesellschafter; Descriptor Frequency = 172; Descriptor Weight = 3.9

...

D73_Anspruch = Anspruch; Descriptor Frequency = 9; Descriptor Weight = 6.9

Note that descriptor term “Aktie” and the associated non-descriptors, such as “Na-
mensaktie”, occur 37 times in the collection of Commercial Register entries. The term
weight of “Aktie”, which equals its inverse document frequency, is greater than the
term weight of “Gesellschafter” because “Aktie” occurs less frequently in this collection.
According to the applied IDF weighting schema, “Aktie” has a greater discriminative
power than “Gesellschafter” due to its relatively infrequent occurrence in the collec-
tion. Note, this metadata file has a purely informative character. In contrast, the file
${PROJECT HOME}/1weights.ddw contains the same descriptor weights for usage in the
first clustering iteration of the application phase.

The text unit vector file ${PROJECT HOME}/vectors1.arff is input to the first clus-
tering iteration, which is described in the next section. This file contains 9,254 vectors
to be clustered in the Weka-specific ARFF format [WF05]. ARFF-files include metadata
about the relation and its attributes (i.e., their names and domains), as well as the actual
data below the line @data. For example, the second vector depicted below corresponds
to the second text unit of file ${PROJECT HOME}/inputCollection/volume100668.xml:
“Persönlich haftende Gesellschafterin: AGE Glas Vertrieb GmbH, Sitz: Garbsen.” The
descriptor “Gesellschafter” occurs in this text unit in the form of its associated non-
descriptor “Gesellschafterin”. Hence the second vector component represents a term
weight greater than zero. The first component of the second vector equals zero because
neither the descriptor term “Aktie” nor a related non-descriptor occurs in this sentence.

@relation ’DIAsDEM’

@attribute DocumentType string

@attribute Document string

@attribute TextUnit string

@attribute D1_Aktie real

@attribute D2_Gesellschafter real

...

@attribute D73_Anspruch real

@data

...

null,/home/.../volume100668.xml:0,...

null,/home/.../volume100668.xml:0,1,0,3.98531,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

...

Vectorize Text Units 2.2: Summary

48

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Task: Actions → Prepare Data Set → Vectorize Text Units 2.2

Use Case: The user wants to cluster pre-processed text units of imported texts as
part of the DIAsDEM KDT process for semantic tagging of domain-
specific texts archives. Vectorizing text units precedes the clustering step.

Prerequisites: The default text units layer of each DIAsDEM document must contain
the section <ProcessedTextUnits>. Text units should have been cre-
ated, tokenized, and lemmatized in the DIAsDEM collection, and named
entities should have been replaced with placeholders in all text units.

Remarks: In the KDT phase of the DIAsDEM framework, an iteration-specific col-
lection frequencies file is created for usage in the application phase.

Vectorize Text Units 2.2: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: project property Default Collection File

KDT Process Iteration: If 1 is input to indicate the first iteration, text unit vectors
are created for all text units in section <ProcessedTextUnits>. If a
number greater than 1 is input to indicate subsequent iterations, text unit
vectors are created for text units in section <ProcessedTextUnits> that
have not been semantically named in a previous clustering iteration (i.e.,
ClusterLabel="-"). These vectors have been assigned to qualitatively
unacceptable clusters in all preceding iterations, as explained in Section 1.
Default value: project property Default Iteration (1, 2, ...)

Text Unit Vectors Format : Choice of vector file format as described in Subsection 4.4.1
on page 104 between comma separated values (CSV file), fixed width
values (TXT file), the Weka-specific ARFF file format, and the sparse
ARFF file format; default value: project property Default Vector File
Format

Text Unit Vectors File: Valid local file name of file to be created or replaced by DIAs-
DEM Workbench; file extension depends on choice of Text Unit Vectors
Format : .csv, .txt, or .arff; default value: project property Default
Text Unit Vectors File

Thesaurus File: Valid local file name of existing DIAsDEM-specific thesaurus file as
described in Subsection 4.4.1 on page 104; file extension: .dth; default
value: project property Default Thesaurus File

49

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Text Unit Descriptors: If All Descriptors in Thesaurus is enabled, all descriptor terms
in Thesaurus File are vector dimensions. If Descriptors whose Scope Note
Contain String is enabled, only descriptor terms in Thesaurus File are
valid whose scope notes contain the complete string entered below. If De-
scriptors whose Scope Note Don’t Contain String is enabled, only descrip-
tor terms in Thesaurus File are valid whose scope notes do not contain
the complete string entered below.

Descriptor Frequency : If Raw Descriptor Frequency is enabled, term frequency of valid
descriptor d in text unit u equals the number of times d occurs in u. If
Boolean Descriptor Frequency is enabled, term frequency of d in u is 1 if
d occurs in u and 0 otherwise.

Collection Frequency : In the KDT phase, either the option No Collection Frequency:
Create New File or Inverse Collection Frequency: Create New File has
to be enabled. In the former case, the term frequency of valid descriptor
d in text unit u is not weighted by a collection frequency component,
and thus all descriptor weights equal the descriptor frequency. If the
latter option is enabled, the descriptor frequency of valid descriptor d
in text unit u is multiplied by the inverse document frequency of d in
the entire collection to compute the descriptor weight. In contrast, the
option Apply Existing Collection Frequencies File must be enabled in the
application phase. In this phase, an existing file comprising iteration-
specific collection frequencies file must be specified as well.

Collection Frequencies File: Valid name of local file comprising collection frequencies
that is created or replaced in the KDT phase and retrieved in the ap-
plication phase, respectively; file extension: .dcfq; default value: project
property Default Descriptor Weights File

Length Normalization: If No Length Normalization is selected, the final descriptor weights
are not normalized to take care of variation in text unit length. Otherwise,
a Cosine length normalization is performed during text unit vectorization.

Advanced Options: If Create File for Mining Descriptor Association Rules is enabled,
an additional file named analogously to Text Unit Vectors File is created,
which is suffixed .assoc. It can be used for discovering association rules
between descriptor terms in text units. If Create Metadata File for Text
Unit Vectors File is enabled, an additional file is created that is named
analogously to Text Unit Vectors File with suffix .meta. This metadata
file contains mappings of abbreviated attribute names onto their respec-
tive unabbreviated descriptors along with their descriptor frequencies and
descriptor weights.

50

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

3.3.5 Clustering Text Unit Vectors in Iteration 1

DIAsDEM Workbench supports the export of text unit vectors into different, mostly
standardized file formats. Hence, various external clustering algorithms could be em-
ployed to group vectors based on their content for subsequent semantic labeling. This
plug-out concept has been successfully tested in case studies employing commercial data
mining applications [WS01c, WS02c]. Additionally, DIAsDEM Workbench implements
a plug-in concept that, for example, wraps the Java-based data mining library Weka.

Along with various data pre-processing and machine learning algorithms, Weka in-
cludes three clustering algorithms (i.e., k-means, Cobweb, and EM), which have been
integrated into DIAsDEM Workbench. Discussing these clustering algorithms is beyond
the scope of this tutorial. See [WF05] for an excellent description of these algorithms,
their parameters, and their implementation in the open source Weka library. For mod-
erate amounts of data, all three Weka algorithms are capable of clustering text unit
vectors without memory- or runtime-related problems. For large amounts of data, the
task Actions → Discover Patterns → Cluster Text Unit Vectors (hypKNOWsys) out-
performs the Weka algoritms. In this case study, however, the Weka k-means clustering
algorithm is employed only. To proceed, select Actions → Discover Patterns → Cluster
Text Unit Vectors (Weka) and enter the following parameters:

Parameter Value

Clustering Mode Clustering Phase (Create New Clustering Model)

Collection File ${PROJECT HOME}/collection.dcf
Text Unit Vectors File ${PROJECT HOME}/1vectors.arff
Clustering Algorithm weka.clusterers.SimpleKMeans

Clustering Parameters 1) Number of Clusters = 100

2) Acuity =

3) Cutoff =

4) Max. Iterations =

5) Random Number Seed =

6) Min. Std. Deviation =

Clustering Results File ${PARAMETER HOME}/1results.csv
Text Unit Clusterer File ${PARAMETER HOME}/1clusterer.wskm

Click the OK button to start the first clustering iteration. According to the parame-
ters, the simple k-means algorithm is executed to create exactly k = 100 text unit vector
clusters, some of whom may remain empty. Number of Clusters is the only parameter
of this algorithm whereas Acuity and Cutoff are two parameters of the Cobweb clus-
tering algorithm. The EM algorithm can be parameterized by Max. Iterations, Random
Number Seed, and Min. Std. Deviation. All algorithms require text unit vector files that
conform to the Weka-specific ARFF-format. Again, see [WF05] for a detailed discussion
of these parameters. The progress of clustering, which requires a few minutes, cannot
be displayed due to the missing support of progress measurement in Weka.

51

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Figure 3.17: Cluster Text Unit Vectors (Weka) Dialog

DIAsDEM Workbench post-processes the proprietary output file generated by Weka
clusterers (e.g., ${PROJECT HOME}/1results.csv.temp). Clustering results are con-
verted into CSV files, which can easily be processed by the tasks Actions → Postprocess
Patterns → Monitor Cluster Quality 2.2 and Actions → Postprocess Patterns → Tag
Text Units, respectively. After clustering has finished, inspect the Clustering Results
File ${PROJECT HOME}/1results.csv. Each line contains a DIAsDEM document ID,
the respective text unit ID as the second attribute, and the associated cluster ID as the
third attribute. Consider, for example, the first and only DIAsDEM document in file
${PROJECT HOME}/inputCollection/volume100668.xml: The first text unit is assigned
to cluster 2 whereas the second one is assigned to cluster 48. Note, cluster 2 also contains
the first text unit of the DIAsDEM document in file volume100669.xml.

...

/home/.../volume100668.xml:0,0,2

/home/.../volume100668.xml:0,1,48

/home/.../volume100668.xml:0,2,31

/home/.../volume100668.xml:0,3,26

/home/.../volume100668.xml:0,4,52

/home/.../volume100669.xml:0,0,2

...

As described in Subsection 3.3.6, the content of text units clusters can be visual-
ized by Actions → Postprocess Patterns → Monitor Cluster Quality 2.2. The file
${PROJECT HOME}/1clusterer.wskm is a serialized instance of the Java class weka.

clusterers.SimpleKMeans. This so-called text unit clusterer can be employed to cluster
text unit vectors during the application phase of the DIAsDEM framework. In contrast
to the clustering or KDT phase exemplified by this section, Text Unit Clusterer File

52

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

is an input file during the application phase. However, running DIAsDEM Workbench
in application mode can be simulated by applying ${PROJECT HOME}/1clusterer.wskm
to the same text unit vectors in ${PROJECT HOME}/1vectors.arff using the following
parameters:

Parameter Value

Clustering Mode Application Phase (Apply Existing Clustering Model)

Collection File ${PROJECT HOME}/collection.dcf
Text Unit Vectors File ${PROJECT HOME}/1vectors.arff
Clustering Algorithm weka.clusterers.SimpleKMeans

Clustering Parameters 1) Number of Clusters =

2) Acuity =

3) Cutoff =

4) Max. Iterations =

5) Random Number Seed =

6) Min. Std. Deviation =

Clustering Results File ${PARAMETER HOME}/1results.csv
Text Unit Clusterer File ${PARAMETER HOME}/1clusterer.wskm

Compared to training a text unit clusterer, a runtime improvement can be noticed
in application mode. When applying an existing clusterer to text unit vectors, the
algorithm parameters cannot be altered due to obvious reasons. After clustering text
unit vectors, monitoring the cluster quality is the next step in this clustering or KDT
phase of the case study, as described in the next section. In contrast, clustering is directly
followed by text unit tagging if DIAsDEM Workbench is running in application mode.

The task Actions → Discover Patterns → Cluster Text Unit Vectors (Weka) encap-
sulates three Weka clustering algorithms (i.e., k-means, Cobweb, and EM). Due to their
poor performance on large data sets in discovery mode, the missing support of common
cluster validity indices, and the necessity to process data sets inside the main memory in
application mode, however, the author decided to implement five additional algorithms:
an enhanced simple k-means algorithm, the bisecting k-means algorithm [SKK00], the
Batch Map algorithm [Koh01, pp. 139–140], the Jarvis/Patrick SNN clustering [JP73],
as well as the Ertöz/Steinbach/Kumar SNN clustering [ESK04]. These algorithms are
available via the task Actions → Discover Patterns → Cluster Text Unit Vectors (hyp-
KNOWsys).

Cluster Text Unit Vectors (Weka): Summary

Task: Actions → Discover Patterns → Cluster Text Unit Vectors (Weka)

Use Case: The user wants to cluster text unit vectors as part of the DIAsDEM KDT
process for semantic tagging of domain-specific texts archives.

53

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Prerequisites: Vectors to be clustered in Text Unit Vectors File must conform to the
Weka-specific ARFF file format. This file format is exported by Actions
→ Prepare Data Set → Vectorize Text Units 2.2 and is described in Sub-
section 4.4.1 on page 104.

Result: In clustering mode, text unit vectors are clustered by the chosen algo-
rithm. The resulting text unit clusterer is saved for subsequent usage in
application mode. Given an existing text unit clusterer, text units can
quickly be assigned to their respective clusters in application mode. Addi-
tionally, the project properties Default Collection File, Default Text Unit
Vectors File, Default Clustering Algorithm, Default Clustering Mode, De-
fault Clustering Parameters, Default Clustering Results File, and Default
Text Unit Clusterer File are set and updated, respectively.

Remarks: Instead of employing the Weka-based, internal clustering algorithms, any
other algorithm might also be used if the results can be exported or con-
verted into a file format supported by DIAsDEM Workbench.

Cluster Text Unit Vectors (Weka): Parameters

Clustering Mode: If Clustering Phase (Create New Clustering Model) is enabled, a new
text unit clusterer is trained according to the parameter settings and
output as Text Unit Clusterer File. If Application Phase (Apply Existing
Clustering Model) is enabled, the existing clusterer Text Unit Clusterer
File is applied to the content of Text Unit Vectors File.

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: project property Default Collection File

Text Unit Vectors File: Valid local file name of existing file; file extension: .arff; default
value: project property Default Text Unit Vectors File

Clustering Algorithm: One of three algorithms supported by the Java-based Weka li-
brary [WF05] must be selected: weka.clusterers.SimpleKMeans, weka.clus-
terers.Cobweb, or weka.clusterers.EM.

Clustering Parameters: If Clustering Phase (Create New Clustering Model) is enabled,
the selected algorithm can be parameterized as follows [WF05]: weka.clus-
terers.SimpleKMeans: Number of Clusters; weka.clusterers.Cobweb: Acu-
ity and Cutoff ; weka.clusterers.EM : Max. Iterations, Random Number
Seed, and Min. Std. Deviation.

54

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Clustering Results File: Valid local file name of file to be created or replaced by DIAs-
DEM Workbench; file extension: .csv default value: project property De-
fault Clustering Results File

Text Unit Clusterer File: Valid local file name of file to be created or replaced by DIAs-
DEM Workbench if Clustering Mode is set to Clustering Phase; valid local
file name of existing file if Clustering Mode is set to Application Phase; file
extension depends on clustering algorithm: .wskm, .wcw, or .wem; default
value: project property Default Text Unit Clusterer File

3.3.6 Monitoring Cluster Quality in Iteration 1

As explained in the introduction, the set of text unit clusters discovered during cluster-
ing has to be analyzed to separate qualitatively acceptable clusters from unacceptable
ones. Recall that members of the former are semi-automatically assigned a semantic
label whereas all text unit vectors assigned to qualitatively unacceptable clusters are
re-clustered in the next iteration. A discussion of cluster quality criteria is beyond the
scope of this tutorial. However, the cluster quality criteria are described in [GSW01].
The cluster quality monitor of DIAsDEM Workbench computes descriptive statistics for
clusters, visualizes the content of clusters in HTML files, and creates a cluster label file.
The latter contains default semantic labels for qualitatively acceptable clusters only. De-
fault cluster labels are composed of text unit descriptors that prevail in the respective
clusters. Select Actions → Postprocess Patterns → Monitor Cluster Quality 2.2 and
submit the following parameters to start monitoring cluster quality:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
KDT Process Iteration 1

Result File Format CSV: Comma Separated Values

Cluster Result File ${PROJECT HOME}/1results.csv
Cluster Directory ${PROJECT HOME}/kddProcessIteration1
Cluster Label File ${PROJECT HOME}/1labels.dcl
Max. Cluster ID 99

Thesaurus File ${PARAMETER HOME}/thesauri/de/Case123Thesaurus.dth
Text Unit Descriptors Descriptors whose Scope Notes Contain String

Case1

Advanced Options Disabled: Ignore First Line of Cluster Result File

Enabled: Ignore Empty Clusters in Cluster Index HTML File

Enabled: Rank Clusters by Quality in Cluster Index HTML File

Enabled: Launch Web Browser with Cluster Index HTML File

Enabled: Launch Cluster Label Editor with Cluster Label File

Enabled: Dump DIAsDEM Documents for Visualization

55

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Cluster Quality Criteria 1) Dominant Descriptor Threshold = 0.8

2) Rare Descriptor Threshold = 0.01

3) Max. Descriptor Coverage = 0.75

4) Min. Descriptor Dominance = 0.25

5) Min. Cluster Size = 50

6) Frequent Non-Descriptor Threshold = 0.2

7) Max. Number of Output Text Units = 1000

Figure 3.18: Monitor Cluster Quality 2.2 Dialog

The settings of Thesaurus File and Text Unit Descriptors must exactly correspond to
the parameters entered in Actions → Prepare Data Set → Vectorize Text Units 2.2 in
the current clustering iteration. Max. Cluster ID must equal the greatest integer that
serves as a cluster identifier in the current clustering run. In this first iteration, the
Weka simple k-means algorithm was parameterized to discover k = 100 clusters. How-
ever, Max. Cluster ID is 99 according to the output of Actions → Discover Patterns →
Cluster Text Unit Vectors (Weka). Please refer to [GSW01] for description of Cluster
Quality Criteria. Note that [GSW01] used a different terminology and refers to Max.
Descriptor Coverage as Max. Distinct Ratio, to Min. Descriptor Dominance as Min.
Frequent Ratio, and to Min. Cluster Size as Min. Cardinality. In addition, DIAsDEM
Workbench 2.2 employs four additional threshold parameters that affect either cluster
quality computation (i.e., Dominant Descriptor Threshold and Rare Descriptor Thresh-
old) or cluster visualization output (i.e., Frequent Non-Descriptor Threshold and Max.
Number of Output Text Units). Contact the author to obtain a publication that describes
the cluster quality criteria in detail. In principle, however, decreasing Min. Cluster Size,
decreasing Min. Descriptor Dominance, or increasing Max. Descriptor Coverage tends
to result in a greater number of qualitatively acceptable clusters which are automatically
assigned a default label in Cluster Result File.

After monitoring cluster quality, your preferred Web browser pops up and displays
the HTML file ${PROJECT HOME}/kddProcessIteration1/index.html. As illustrated

56

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Figure 3.19: Cluster Index File Created by Monitor Cluster Quality 2.2

Figure 3.20: Cluster Label Editor of DIAsDEM Workbench 2.2

in Figure 3.19, this file references all non-empty cluster files in the same directory. If the
browser cannot be launched, check the current settings in the External Programs tab
of the Tools → Options dialog. Figure 3.20 depicts Cluster Label Editor, which is also
launched within DIAsDEM Workbench. This editor allows you to modify the automat-
ically created cluster label file ${PROJECT HOME}/1labels.dcl by altering and deleting
default cluster labels, as well as by semantically naming clusters without a default la-
bel. Using Cluster Label Editor to customize the file ${PROJECT HOME}/1labels.dcl
is described in Subsection 3.3.7. Nevertheless, close both Cluster Label Editor and the
browser displaying ${PROJECT HOME}/kddProcessIteration1/index.html.

Monitor Cluster Quality 2.2: Summary

57

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Task: Actions → Postprocess Patterns → Monitor Cluster Quality 2.2

Use Case: The user wants to separate qualitatively acceptable text unit vector clus-
ters from unacceptable ones after clustering as part of the DIAsDEM
KDT process for semantic tagging of domain-specific texts archives.

Prerequisites: Clustering results in Cluster Result File must conform either to the DIAs-
DEM-specific CSV or to the DIAsDEM-specific TXT file format. Both
formats are described in Subsection 4.4.3 on page 107.

Result: All discovered text unit vector clusters are visualized as HTML files in
Clustering Directory. Cluster Label File contains default semantic la-
bels for qualitatively acceptable clusters according to the specified Clus-
ter Quality Criteria. Additionally, the project properties that represent
default values of input parameters are set and updated, respectively. re-
spectively.

Remarks: This task is only executed in the KDT phase of the DIAsDEM framework,
as explained in Subsection 1. In this phase, monitoring cluster quality
and thereby creating Cluster Label File is a prerequisite for subsequently
tagging text units using Actions → Postprocess Patterns → Tag Text
Units. Thesaurus File and Text Unit Descriptors must exactly correspond
to the parameters entered in Actions → Prepare Data Set → Vectorize
Text Units 2.2 in the same clustering iteration.

Monitor Cluster Quality 2.2: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: project properties Default Collection File

KDT Process Iteration: Number of current KDT process iteration; default value: project
property Default Iteration (1, 2, ...)

Result File Format : Choice of cluster result file format, as described in Subsection 4.4.3
on page 107, between comma separated values (CSV file) and fixed width
values (TXT file); default value: project property Default Result File For-
mat

Cluster Result File: Valid local file name of existing file; file extension depends on choice
of Result File Format : .csv or .txt; default value: project property
Default Cluster Result File

Cluster Directory : Valid local file name of existing directory or directory to be created
by DIAsDEM Workbench; Cluster Directory should be empty; default
value: project property Default Cluster Visualization Directory

58

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Cluster Label File: Valid local file name of file to be created or replaced by DIAsDEM
Workbench; file extension: .dcl; default value: project property Default
Cluster Label File

Max. Cluster ID : integer greater than zero; corresponds to the greatest cluster identifier
assigned by the clustering algorithm in the current iteration; default value:
project property Default Max. Cluster ID

Thesaurus File: Valid local file name of existing DIAsDEM-specific thesaurus file, as
described in Subsection 4.4.1 on page 104; file extension: .dth; default
value: project property Default Thesaurus File

Text Unit Descriptors: If All Descriptors in Thesaurus is enabled, all descriptor terms
in Thesaurus File are vector dimensions. If Descriptors whose Scope Note
Contain String is enabled, only descriptor terms in Thesaurus File are
valid whose scope notes contain the complete string entered below. If De-
scriptors whose Scope Note Don’t Contain String is enabled, only descrip-
tor terms in Thesaurus File are valid whose scope notes do not contain
the string entered below.

Advanced Options: If the first line of Cluster Result File is a list of attribute names, Ig-
nore First Line of Cluster Result File must be enabled. If Ignore Empty
Clusters in Cluster Index HTML File is enabled, the index file in Clus-
tering Directory does not contain links to HTML files of empty clusters.
If Rank Clusters by Quality in Cluster Index HTML File is enabled, clus-
ters are ranked by decreasing quality index in the index file of Clustering
Directory. If Launch Web Browser with Cluster Index HTML File is en-
abled, the browser specified in Tools → Options is launched to display the
index file of Clustering Directory after monitoring cluster quality. Analo-
gously, if Launch Cluster Label Editor with Cluster Label File is enabled,
Tools → Cluster Label Editor is launched to edit Cluster Label File. If
Dump DIAsDEM Documents for Visualization is enabled, all documents
comprising the collection are exported as XML files in subdirectories of
Cluster Directory. In this case, HTML files that visualize the content of
clusters comprise a direct link to each text unit to its original DIAsDEM
document to allow a quick analysis of the text unit context.

Cluster Quality Criteria: Please refer to [GSW01] for description of Cluster Quality Cri-
teria. Note that this paper uses a different terminology and refers to
Max. Descriptor Coverage as Max. Distinct Ratio, to Min. Descriptor
Dominance as Min. Frequent Ratio, and to Min. Cluster Size as Min.
Cardinality. In addition, DIAsDEM Workbench 2.2 employs four addi-
tional threshold parameters that affect either cluster quality computation

59

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Figure 3.21: Top of HTML File Visualizing the Content of Cluster 3

(i.e., Dominant Descriptor Threshold and Rare Descriptor Threshold) or
cluster visualization output (i.e., Frequent Non-Descriptor Threshold and
Max. Number of Output Text Units).

3.3.7 Editing the Cluster Label File in Iteration 1

After clustering text unit vectors and monitoring cluster quality, the default Cluster
Label File should be manually inspected by a domain specialist. The objective of this
task is to assign each qualitatively acceptable cluster an appropriate semantic label.
Semantic cluster labels should provide a concise and content-based description of the
respective text units because labels finally serve as elements of the XML DTD to be
derived. Text units whose vectors are assigned to semantically labeled clusters will be
annotated by an XML tag whose name corresponds to the respective cluster label. The
remaining text unit vectors are input to the clusterer in the next iteration.

Firstly, qualitatively acceptable clusters should be checked, which have been auto-
matically assigned a default cluster label. In this case study, default German cluster
labels have to be replaced by English labels manually. Furthermore, acceptable clusters
may contain rather inhomogeneous text units according to the human sense of semantic
similarity. For example, two opposite semantic concepts, such as “to appoint” and “to
dismiss” a managing director, might be prevailing in the same cluster. In these cases,
default labels should be deleted in Cluster Label File to enforce a re-clustering of the
corresponding text unit vectors in the next KDT process iteration. Secondly, quali-
tatively unacceptable clusters should be inspected as well because the applied cluster
quality criteria cannot capture all cases of semantic similarity. For instance, a cluster
might contain text units that belong to a common semantic concept although there are
no statistically prevailing text unit descriptors.

60

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Figure 3.22: Descriptor Frequencies at the Bottom of Cluster 3 HTML File

Select Tools → Cluster Label Editor and open the file ${PROJECT HOME}/1labels.dcl
by clicking on Open and choosing this cluster label file. As depicted in Figure 3.20, this
file contains default cluster labels assigned during the first iteration. Additionally, open
the index HTML file ${PROJECT HOME}/kddProcessIteration1/index.html. For each
cluster, there exists an HTML file in the same directory that visualizes the cluster content
and that provides descriptive statistics of frequently occurring text unit descriptors.

Altogether, 21 qualitatively acceptable clusters and 79 non-empty unacceptable ones
have been automatically discovered by the preceding task. For example, Figures 3.21 and
3.22 illustrate the HTML file visualizing the qualitatively acceptable cluster 0, which has
been assigned the label “DEFAULT Vertretungsmacht Prokura Geschaeftsfuehrer Ge-
sellschaft bestellen”. This default label has been created by concatenating text unit
descriptors that prevail in cluster 0 and that are highlighted in Figure 3.22. Change
the label of cluster 0 into its English equivalent “IfAppointmentOfManyManagingDirec-
tors JointPowerToRepresent” in Cluster Label Editor, modify the cluster quality status
from “a/?” (i.e., regarded as acceptable by DIAsDEM Workbench and no expert assess-
ment yet) to “a/a” (i.e., regarded as acceptable by both DIAsDEM Workbench and ex-
pert), and click the Save button. Consider cluster 90, which is listed in the section “Qual-
itatively Unacceptable Clusters” of the file ${PROJECT HOME}/kddProcessIteration1/
index.html. The German concept “Tätigkeit” occurs along with the contextually re-
lated concepts “Unternehmen” and “Beteiligung” in all members of cluster 90. There-
fore, this cluster can be manually labeled with its English equivalent “PurposeOfCom-
pany”. Furthermore, change the cluster quality status of cluster 90 from “u/?” (i.e.,
regarded as unacceptable by DIAsDEM Workbench and no expert assessment yet) to
“u/a” (i.e., regarded as acceptable by expert despite other assessment of DIAsDEM
Workbench). Inspect the remaining clusters and modify their semantic labels in Cluster
Label File according to Table 3.2. Finally, close the Web browser, save Cluster Label

61

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

File by clicking on Save, and close Cluster Label Editor by clicking the Exit button.

Cluster Quality Semantic Cluster Label

0 a/a IfAppointmentOfManyManagingDirectors JointPowerToRepresent
1 a/a SolePowerToRepresentCanBeGranted
2 a/a PurposeOfCompany
4 a/a ResolutionByShareholders ChangeOfPlaceOfDomicile
6 a/a ShareCapital
7 a/a LimitedLiabilityCompany
8 a/a IfAppointmentOfOneManagingDirector SolePowerToRepresent
12 a/a PublicationMediaOfCommercialRegisterEntries
13 a/a SolePowerToRepresent PowerToContractWithOneself
14 a/a ConclusionAndModificationOfPartnershipAgreement
15 a/a ConclusionOfPartnershipAgreement
20 a/a AppointmentOfManagingDirector
21 a/a PurposeOfCompany
22 a/u -
25 a/a SolePowerToRepresent PowerToContractWithOneself
26 a/a CommencementOfPartnership
31 a/a LimitedPartnership
37 a/u -
52 a/a NumberOfLimitedPartners
53 a/a AppointmentOfManagingDirector
56 a/a PowerToContractWithOneself
90 u/a PurposeOfCompany

Table 3.2: Summary of Semantic Cluster Labels in the First Iteration

Cluster Label Editor of DIAsDEM Workbench 2.2 supports so-called tag proposal files
to minimize human typing efforts. Tag proposal files can either be text files or DIAsDEM-
specific files containing a previously derived, concept-based document type definition.
For example, copy the cluster labels listed in Table 3.2 into an empty text file such
that each line exactly contains one label. After clicking the button Tags and selecting
this new tag proposal file, Cluster Label Editor creates a drop-down menu beside each
cluster label field. All drop-down menus comprise the same list of potentially useful
cluster labels for the expert to choose from. Furthermore, tag proposal files can be
imported into Cluster Label Editor one after the other.

3.3.8 Tagging Text Units in Iteration 1

After clustering text unit vectors (i.e., creating Cluster Result File), monitoring cluster
quality, and manually editing the resulting Cluster Label File, all intermediate DIAs-
DEM documents associated with Collection File have to be updated. Specifically, each
text unit whose vector has been input to the current clustering iteration should be an-

62

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

notated with the numerical identifier of the cluster it has been assigned to. In addition,
members of qualitatively acceptable and thus labeled clusters have to be annotated with
the respective semantic label specified in Cluster Label File. Tagging text units is a
prerequisite for exporting text unit vectors in the next iteration as well as for tagging
entire documents (i.e., creating semantically annotated output XML documents) after
the final clustering iteration. Hence, select Actions → Postprocess Patterns → Tag Text
Units and type in the following parameters:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
KDT Process Iteration 1

Result File Format CSV: Comma Separated Values

Cluster Result File ${PROJECT HOME}/1results.csv
Cluster Label File ${PROJECT HOME}/1labels.dcl
Advanced Options Disabled: Ignore First Line of Cluster Result File

Figure 3.23: Tag Text Units Dialog

The parameters KDT Process Iteration, Result File Format, and Cluster Result File
have been discussed in Subsection 3.3.6 in the context of monitoring cluster quality. Clus-
ter Label File corresponds to the file that has been created by Actions → Postprocess
Patterns → Monitor Cluster Quality 2.2. Click on OK to tag all text units accordingly.
Thereafter, open the file ${PROJECT HOME}/inputCollection/volume100878.xml. The
elements of section <ProcessedTextUnits> mark up the same content as before. How-
ever, they have been extended by the attributes Iteration, ClusterID, and Cluster-

Label to keep track of cluster assignments. Values of ClusterLabel equal either “-” for
unlabeled clusters or correspond to the semantic label of the respective cluster.

63

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE DefaultDIAsDEMvolume SYSTEM "DefaultDIAsDEMvolume.dtd">

<DefaultDIAsDEMvolume NumberOfDocuments="1">

<DefaultDIAsDEMdocument NumberOfTextUnitsLayers="0"> ...

<TextUnitsLayer TextUnitsLayerID="0" TextUnitsDescription="Algorithm:

HEURISTIC_SENTENCE_IDENTIFIER"> ...

<ProcessedTextUnits> ...

<ProcessedTextUnit TextUnitID="2" Iteration="1" ClusterID="6"

ClusterLabel="ShareCapital">Stammkapital : <NeRef NeID="0" /> ...

<ProcessedTextUnit TextUnitID="8" Iteration="1" ClusterID="1"

ClusterLabel="SolePowerToRepresentCanBeGranted-">

Einzelvertretungsbefugnis können erteilen werden .

</ProcessedTextUnit><ProcessedTextUnit TextUnitID="9" Iteration="1"

ClusterID="20" ClusterLabel="AppointmentOfManagingDirector"><NeRef

NeID="16" />, sein zur Geschäftsführerin bestellen .</ProcessedTextUnit>

... <ProcessedTextUnit TextUnitID="11" Iteration="1" ClusterID="12"

ClusterLabel="PublicationMediaOfCommercialRegisterEntries">nicht

eintragen : d Bekanntmachung d Gesellschaft erfolgen im Bundesanzeiger

.</ProcessedTextUnit>

</ProcessedTextUnits> ...

</TextUnitsLayer>

</DefaultDIAsDEMdocument>

</DefaultDIAsDEMvolume>

Consider the first text unit shown in the file excerpt above, which corresponds to the
original sentence “Stammkapital: 50.000 DM.” Its text unit vector has been assigned to
cluster 6, which in turn has been labeled “ShareCapital”. Thus, this sentence is subse-
quently tagged as “<ShareCapital> Stammkapital: 50.000 DM. </ShareCapital>”.
Furthermore, the text unit vector corresponding to the sentence “Marion Marcella
Adolph geb. Priester, 22.03.1957, Offenbach, ist zur Geschäftsführerin bestellt.” has
been assigned to cluster 20, which has been semantically labeled “AppointmentOfManag-
ingDirector”. This exemplary text document does not comprise any unlabeled text units
after the first clustering iteration. Altogether, 1,462 text unit vectors that correspond
to unlabeled text units are input to the second clustering iteration. Note, all text unit
vectors representing annotated text units are not re-clustered in the next iteration. Once
a semantic label has been attached to a text unit, it can only be changed by the auxiliary
task Actions → Miscellaneous → Replace Labels of Text Units.

Executing the second clustering iteration is concisely described in the next subsection.
Subsequently, Subsections 3.4.1 and 3.4.2 introduce the tasks for deriving a concept-
based XML document type definition and finally creating semantically tagged XML
documents.

Tag Text Units: Summary

Task: Actions → Postprocess Patterns → Tag Text Units

64

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Use Case: The user wants to annotate text units in intermediate DIAsDEM docu-
ments according to the results of monitoring cluster quality as part of the
DIAsDEM KDT process for semantic tagging of domain-specific texts.

Prerequisites: The default text units layer of each DIAsDEM document must contain the
section <ProcessedTextUnits>. Moreover, clustering results in Cluster
Result File must conform either to the DIAsDEM-specific CSV or to the
DIAsDEM-specific TXT file format. Both file formats are described in
Subsection 4.4.3 on page 107.

Result: In the first clustering iteration, the attributes Iteration, ClusterID,
and ClusterLabel of all processed text units are created or reset. In
subsequent iterations, the section <ProcessedTextUnits> is updated. In
both cases, text units referred to in Cluster Result File are annotated
with the iteration number, their current cluster ID, and the corresponding
label according to Cluster Label File. Additionally, the project properties
Default Collection File, Default Result File Format, Default Cluster Result
File, and Default Cluster Label File are set and updated, respectively.

Remarks: Tagging text units is a prerequisite for either starting the next clustering
iteration or for finally executing the tasks Actions → Postprocess Patterns
→ Derive Conceptual DTD 2.2 and thereafter Actions → Postprocess
Patterns → Tag Documents 2.2.

Tag Text Units: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: project property Default Collection File

KDT Process Iteration: Number of current KDT process iteration; default value: project
property Default Iteration (1, 2, ...)

Result File Format : Choice of cluster result file format, as described in Subsection 4.4.3
on page 107, between comma separated values (CSV file) and fixed width
values (TXT file); default value: project property Default Result File For-
mat

Cluster Result File: Valid local file name of existing file; file extension depends on choice
of Result File Format : .csv or .txt; default value: project property
Default Cluster Result File

Cluster Label File: Valid local file name of existing file created by DIAsDEM Workbench
in Actions → Postprocess Patterns → Monitor Cluster Quality 2.2 and

65

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

possibly modified by Tools → Cluster Label Editor ; file extension: .dcl;
default value: project property Default Cluster Label File

Advanced Options: If the first line of Cluster Result File contains attribute names, Ignore
First Line of Cluster Result File must be enabled.

3.3.9 Summary of KDD Process Iteration 2

Text units are re-clustered in iteration 2 if their vectors have not been assigned to a
qualitatively acceptable cluster in the first iteration. Consequently, text unit vectors
corresponding to unlabeled sentences need to be exported and clustered again. After
monitoring cluster quality and creating a new Cluster Label File, text units have to be
tagged according to the results of the second iteration. These steps of the DIAsDEM
KDT process have been discussed in detail in Sections 3.3.4 through 3.3.8. Hence, this
section only summarizes parameter settings and briefly explains particularities.

Firstly, text unit vectors, which constitute the input data set to iteration 2, are ex-
ported. Please select Actions → Prepare Data Set → Vectorize Text Units 2.2, type in
the following parameters, and click on OK.

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
KDT Process Iteration 2

Text Unit Vectors Format ARFF: Weka Data Mining Project

Text Unit Vectors File ${PROJECT HOME}/2vectors.arff
Thesaurus File ${PARAMETER HOME}/thesauri/de/Case123Thesaurus.dth
Text Unit Descriptors Descriptors whose Scope Notes Contain String

Case1

Descriptor Frequency Boolean Descriptor Frequency

Collection Frequency Inverse Collection Frequency: Create New File

Collection Frequencies File ${PROJECT HOME}/2weights.dcfq
Length Normalization No Length Normalization

Advanced Options Disabled: Create File for Mining Descriptor Association Rules

Enabled: Create Metadata File for Text Unit Vectors File

Compared to the first iteration, Text Unit Vectors File contains only 16% of all text
unit vectors. Note additionally, collection-based term weights, such as inverse document
frequencies, are always computed on the basis of the remaining text unit vectors. For
example, compare the different term weights for iteration 1 and 2, which are listed in
the metadata files ${PROJECT HOME}/1vectors.arff.meta and 2vectors.arff.meta,
respectively. To cluster exported text unit vectors, select Actions → Discover Patterns
→ Cluster Text Unit Vectors (Weka), enter the following parameters, and click on the
OK button. In contrast to iteration 2, the maximum number of clusters to be discovered
by the k-means algorithm is k = 50.

66

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

Parameter Value

Clustering Mode Clustering Phase (Create New Clustering Model)

Collection File ${PROJECT HOME}/collection.dcf
Text Unit Vectors File ${PROJECT HOME}/2vectors.arff
Clustering Algorithm weka.clusterers.SimpleKMeans

Clustering Parameters 1) Number of Clusters = 50

2) Acuity =

3) Cutoff =

4) Max. Iterations =

5) Random Number Seed =

6) Min. Std. Deviation =

Clustering Results File ${PARAMETER HOME}/2results.csv
Text Unit Clusterer File ${PARAMETER HOME}/2clusterer.wskm

Analogously to iteration 1, clustering text unit vectors is followed by monitoring the
cluster quality. Hence, select Actions → Postprocess Patterns → Monitor Cluster Quality
2.2, submit the following parameters, and click on OK. Compared with the first iteration,
the minimum cluster size is decreased from 50 to 25.

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
KDT Process Iteration 2

Result File Format CSV: Comma Separated Values

Cluster Result File ${PROJECT HOME}/2results.csv
Cluster Directory ${PROJECT HOME}/kddProcessIteration2
Cluster Label File ${PROJECT HOME}/2labels.dcl
Max. Cluster ID 49

Thesaurus File ${PARAMETER HOME}/thesauri/de/Case123Thesaurus.dth
Text Unit Descriptors Descriptors whose Scope Notes Contain String

Case1

Advanced Options Disabled: Ignore First Line of Cluster Result File

Enabled: Ignore Empty Clusters in Cluster Index HTML File

Enabled: Rank Clusters by Quality in Cluster Index HTML File

Enabled: Launch Web Browser with Cluster Index HTML File

Enabled: Launch Cluster Label Editor with Cluster Label File

Enabled: Dump DIAsDEM Documents for Visualization

Cluster Quality Criteria 1) Dominant Descriptor Threshold = 0.8

2) Rare Descriptor Threshold = 0.01

3) Max. Descriptor Coverage = 0.75

4) Min. Descriptor Dominance = 0.25

5) Min. Cluster Size = 25

6) Frequent Non-Descriptor Threshold = 0.2

7) Max. Number of Output Text Units = 1000

After monitoring cluster quality, the Web browser pops up and displays the HTML
file ${PROJECT HOME}/kddProcessIteration2/index.html, which references all non-
empty cluster files in the same directory. Additionally, Cluster Label Editor is launched

67

3 Case Study – 3.3 Iterative Clustering in the KDT Phase

within DIAsDEM Workbench. DIAsDEM Workbench has automatically discovered nine
qualitatively acceptable clusters only. Please have a look at these clusters and modify
the file ${PROJECT HOME}/2labels.dcl in Cluster Label Editor according to Table 3.3.

Cluster ID Quality Semantic Cluster Label

6 a/u -
8 a/a NameOfMerchant
9 a/a ResolutionByShareholders ChangeOfPlaceOfDomicile
15 a/a ConfermentOfProkura
25 a/a PurposeOfCompany
26 a/a PublicationMediaOfCommercialRegisterEntries
34 a/a FullyLiablePartner
39 a/u -
42 a/a ChangeOfFirmName

Table 3.3: Summary of Semantic Cluster Labels in the Second Iteration

After editing ${PROJECT HOME}/2labels.dcl, select Actions → Postprocess Patterns
→ Tag Text Units, type in the following parameters, and click the OK button to annotate
text units accordingly:

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
KDT Process Iteration 2

Result File Format CSV: Comma Separated Values

Cluster Result File ${PROJECT HOME}/2results.csv
Cluster Label File ${PROJECT HOME}/2labels.dcl
Advanced Options Disabled: Ignore First Line of Cluster Result File

Open the file ${PROJECT HOME}/inputCollection/volume100878.xml. Note that an-
notations and cluster IDs assigned in the first iteration remain untouched. For example,
the original sentence “Stammkapital: 50.000 DM.” is still assigned to cluster 6 of the
first iteration and is still labeled “ShareCapital”.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE DefaultDIAsDEMvolume SYSTEM "DefaultDIAsDEMvolume.dtd">

<DefaultDIAsDEMvolume NumberOfDocuments="1">

<DefaultDIAsDEMdocument NumberOfTextUnitsLayers="0"> ...

<TextUnitsLayer TextUnitsLayerID="0" TextUnitsDescription="Algorithm:

HEURISTIC_SENTENCE_IDENTIFIER"> ...

<ProcessedTextUnits> ...

<ProcessedTextUnit TextUnitID="2" Iteration="1" ClusterID="6"

ClusterLabel="ShareCapital">Stammkapital : <NeRef NeID="0" /> ...

68

3 Case Study – 3.4 XML Tagging of Texts in the KDT Phase

<ProcessedTextUnit TextUnitID="8" Iteration="1" ClusterID="1"

ClusterLabel="SolePowerToRepresentCanBeGranted-">

Einzelvertretungsbefugnis können erteilen werden .

</ProcessedTextUnit><ProcessedTextUnit TextUnitID="9" Iteration="1"

ClusterID="20" ClusterLabel="AppointmentOfManagingDirector"><NeRef

NeID="16" />, sein zur Geschäftsführerin bestellen .</ProcessedTextUnit>

... <ProcessedTextUnit TextUnitID="11" Iteration="1" ClusterID="12"

ClusterLabel="PublicationMediaOfCommercialRegisterEntries">nicht

eintragen : d Bekanntmachung d Gesellschaft erfolgen im Bundesanzeiger

.</ProcessedTextUnit>

</ProcessedTextUnits> ...

</TextUnitsLayer>

</DefaultDIAsDEMdocument>

</DefaultDIAsDEMvolume>

In this case study, only two clustering iterations are performed to exemplify the in-
teractive and iterative DIAsDEM knowledge discovery process. When applying the
DIAsDEM KDT process to real document archives, the iterative clustering should be
continued until further qualitatively acceptable clusters cannot be discovered. Never-
theless, 7,792 (84.2%) of altogether 9,254 text units have been assigned a semantic label
in the training phase of this case study.

3.4 XML Tagging of Texts in the KDT Phase

After finishing the second, in our case the final clustering iteration, text documents
have to be converted into an archive of semantically tagged XML documents to attain
the objectives of the DIAsDEM framework. Hence, a collection-specific and concept-
based XML document type definition has to be derived in the postprocessing phase
of the DIAsDEM knowledge discovery process. Thereafter, semantically tagged XML
documents, which conform to this XML DTD, can be constructed from the collection of
intermediate DIAsDEM documents.

3.4.1 Establishing a Concept-Based XML DTD

A concept-based XML document type definition concisely describes frequently occurring,
collection-specific semantic concepts in the form of DTD elements, which can be either
XML tags or attributes of XML tags. The latter correspond to named entity types whose
instances exceed a relative frequency threshold within all text units annotated with the
respective tag. To continue, select the task Actions → Postprocess Patterns → Derive
Conceptual DTD 2.2 and input the following parameters:

69

3 Case Study – 3.4 XML Tagging of Texts in the KDT Phase

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
Conceptual DTD File ${PROJECT HOME}/conceptualDtd.dcd
DTD Root Element CommercialRegisterEntry

Min. Attribute Support 0.1

DTD Documentation File ${PROJECT HOME}/conceptualDtdDocumentation.html

Figure 3.24: Derive Conceptual DTD 2.2 Dialog

Note, Conceptual DTD File is a DIAsDEM-specific file that contains metadata about
the XML DTD for internal usage only. According to DTD Root Element, the term
CommercialRegisterEntry is the root element of the XML document type definition.
Hence, CommercialRegisterEntry is the root tag of output XML documents, which are
created afterwards. Due to Min. Attribute Support, named entity type e (e.g., “date”)
only qualifies as an attribute of XML tag t if instances of e (e.g., “2003-03-31” and
“2003-04-01”) occur in at least 10% of all text units annotated with t. Click the OK
button to derive the DIAsDEM-specific Conceptual DTD File, which is a required input
parameter for tasks that create final, semantically annotated output documents, such as
Actions → Postprocess Patterns → Tag Documents 2.2.
${PROJECT HOME} now contains five new files, but only conceptualDtd.dcd is re-

ferred to as Conceptual DTD File. The auxiliary files conceptualDtd.dcd.elements,
conceptualDtd.dcd.attributes, and conceptualDtd.dcd.xml are internally refer-
enced by Conceptual DTD File and must thus always reside in the same directory. The
generated DTD documentation template conceptualDtdDocumentation.html contains
an enumeration of valid attributes and five exemplary text units for each DTD element.
DIAsDEM Workbench 2.2 derives a conceptual XML document type definition that
enumerates occurring DTD elements (i.e., XML tags) and attributes associated with
XML tags. Using any text editor, open the DTD file conceptualDtd.dcd.xml, which
is located in ${PROJECT HOME}.

70

3 Case Study – 3.4 XML Tagging of Texts in the KDT Phase

<?xml version="1.0" encoding="ISO-8859-1"?>

<!ELEMENT CommercialRegisterEntry (MetaData*, TaggedDocument)>

<!ELEMENT MetaData (Name, Content)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Content (#PCDATA)>

<!ELEMENT TaggedDocument (#PCDATA | AppointmentOfManagingDirector

| ChangeOfFirmName | CommencementOfPartnership | ... | ConfermentOfProkura

| FullyLiablePartner | ... | LimitedLiabilityCompany | LimitedPartnership

| NameOfMerchant | NumberOfLimitedPartners | PowerToContractWithOneself

| ... | ShareCapital | ... | SolePowerToRepresent_PowerToContractWithOneself

)* >

<!ELEMENT AppointmentOfManagingDirector (#PCDATA)>

<!ELEMENT ChangeOfFirmName (#PCDATA)>

<!ELEMENT CommencementOfPartnership (#PCDATA)> ...

<!ELEMENT SolePowerToRepresent_PowerToContractWithOneself (#PCDATA)>

<!ATTLIST AppointmentOfManagingDirector Date CDATA #IMPLIED>

<!ATTLIST AppointmentOfManagingDirector Person CDATA #IMPLIED>

<!ATTLIST AppointmentOfManagingDirector Place CDATA #IMPLIED>

<!ATTLIST ChangeOfFirmName Company CDATA #IMPLIED> ...

<!ATTLIST ShareCapital AmountOfMoney CDATA #IMPLIED>

Valid output documents (i.e., annotated Commercial Register entries) consists of
two main sections: Metadata stored in DIAsDEM documents is copied into the op-
tional section <MetaData> to facilitate further data processing. The mandatory section
<TaggedDocument> includes semantically annotated text. Elements of the latter section
are defined as a listing of unordered DTD elements such that semantic tags can occur
anywhere in the text. Furthermore, attributes of XML tags are defined as well. For
example, the XML tag AppointmentOfManagingDirector has three optional attributes
Date, Person, and Place. Due to the setting of Min. Attribute Support, instances of
named entity types “date”, “person”, and “place” occur in at least 10% of all text units
annotated with AppointmentOfManagingDirector. Note, semantically tagged XML
documents created by Actions → Postprocess Patterns → Tag Documents 2.2 are valid
XML documents with respect to this DTD. Attributes of XML tags cannot be semanti-
cally named in this release of DIAsDEM Workbench.

Derive Conceptual DTD 2.2: Summary

Task: Actions → Postprocess Patterns → Derive Conceptual DTD 2.2

Use Case: The user wants to derive a concept-based XML DTD from semantically

71

3 Case Study – 3.4 XML Tagging of Texts in the KDT Phase

annotated DIAsDEM documents as part of the DIAsDEM KDT process
for semantic tagging of domain-specific texts archives.

Prerequisites: The default text units layer of each DIAsDEM document must contain
the section <ProcessedTextUnits>. All elements <ProcessedTextUnit>
must have the attributes Iteration, ClusterID, and ClusterLabel.

Results: A collection-specific XML document type definition is derived, which enu-
merates valid XML tags and their attributes. Additionally, the project
properties that correspond to the input parameters are set and updated,
respectively.

Remarks: After deriving the collection-specific, concept-based DTD, semantically
annotated XML documents can be output by Actions → Postprocess Pat-
terns → Tag Documents 2.2.

Derive Conceptual DTD 2.2: Summary

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: project property Default Collection File

Conceptual DTD File: Valid local file name of file to be created or replaced by DIAs-
DEM Workbench; file extension: .dcd

DTD Root Element : ISO-8859-1 encoded string without blank spaces; default value:
project property Default DTD Root Element

Min. Attribute Support : Floating point threshold in the interval [0; 1]: named entity type
e only qualifies as attribute of XML tag t if instances of e occur in at least
the specified portion of all text units annotated with t; default value:
project property Default Min. Attribute Support

DTD Documentation File: Valid local file name of file to be created or replaced by
DIAsDEM Workbench; file extension: .html

3.4.2 Tagging Documents

After deriving an archive-specific document type definition, output XML documents are
created by assembling both tagged (i.e., text units whose vectors have been assigned to a
semantically labeled cluster) and untagged text units in the order of their occurrence in
the original text. Besides the derived XML document type definition and the generated
text unit clusterer for subsequent batch processing, semantically tagged XML documents
constitute the main output of the DIAsDEM KDT process. To proceed, select Actions
→ Postprocess Patterns → Tag Documents 2.2 and enter the following parameters:

72

3 Case Study – 3.4 XML Tagging of Texts in the KDT Phase

Parameter Value

Collection File ${PROJECT HOME}/collection.dcf
XML Document Directory ${PROJECT HOME}/outputXmlDocuments
Conceptual DTD File ${PROJECT HOME}/conceptualDtd.dcd
Random Sample File ${PROJECT HOME}/outputSampleFiles/textUnitSample5Pct.dts
Random Sample Size 0.05

Advanced Options Enabled: Create Tag-by-Document-Matrix as CSV-File

Disabled: Create Log Files for Tag Analysis with WUM

Disabled: Export XML Documents as GATE Files. Directory:

Figure 3.25: Tag Documents 2.2 Dialog

Click the OK button to start the semantic tagging of documents. Besides outputting
semantically tagged XML documents in subdirectories of XML Document Directory,
the task Actions → Postprocess Patterns → Tag Documents 2.2 draws a 5% random
text unit sample. This sample is saved in the DIAsDEM-specific Random Sample File
for subsequent evaluation of the tagging quality. For each intermediate DIAsDEM
document in the collection, a new XML file is output that contains semantically an-
notated content of the corresponding text. For example, the result XML document
${PROJECT HOME}/outputXmlDocuments/part1/document879.xml is depicted below.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE CommercialRegisterEntry SYSTEM "CommercialRegisterEntry.dtd">

<CommercialRegisterEntry>

<MetaData>

<Name>DiasdemDocumentID</Name>

<Content>/home/.../trainingProject/inputCollection/volume100878.xml:0</Content>

</MetaData>

<MetaData>

<Name>SourceFile</Name>

73

3 Case Study – 3.4 XML Tagging of Texts in the KDT Phase

<Content>/home/.../data/samples/de/case1/file10780.training.txt</Content>

</MetaData>

<TaggedDocument>

<PurposeOfCompany>Der Handel mit Waren aller Art sowie Import und Export.

</PurposeOfCompany> ... <ShareCapital AmountOfMoney="50000 DEM">Stammkapital:

50.000 DM.</ShareCapital><LimitedLiabilityCompany>Gesellschaft mit beschränkter

Haftung.</LimitedLiabilityCompany> ... <SolePowerToRepresentCanBeGranted>

Einzelvertretungsbefugnis kann erteilt werden.</SolePowerToRepresentCanBeGranted>

<AppointmentOfManagingDirector Person="16; Marion Marcella Adolph; null; null;

null; 22.03.1957; Priester; Offenbach; null; null">Marion Marcella Adolph geb.

Priester, 22.03.1957, Offenbach, ist zur Geschäftsführerin bestellt.

</AppointmentOfManagingDirector> ... <PublicationMediaOfCommercialRegisterEntries>

Nicht eingetragen: Die Bekanntmachungen der Gesellschaft erfolgen im

Bundesanzeiger.</PublicationMediaOfCommercialRegisterEntries>

</TaggedDocument>

</CommercialRegisterEntry>

The maximum number of result files per subdirectory of XML Document Directory
is determined by the project property Maximum Files per Directory. The supplemen-
tary Random Sample File contains a random sample of text units for subsequent eval-
uation of tagging quality using Tools → Tagging Quality Evaluator 2.2. In addition,
a random sample of completely tagged documents can be created by the task Ac-
tions → Postprocess Patterns → Draw Document Sample 2.2. Open ${PROJECT HOME}/
outputXmlDocuments/TagByDocumentMatrix.csv, which is partly shown below. Each
line contains a relational representation of semantic XML tags that occur in a certain
text document. For example, the XML tag AppointmentOfManagingDirector occurs
in the XML file created from source document /home/.../file10780.training.txt,
whereas the tag ChangeOfFirmName does not occur in this file. This CSV file can easily
be imported in any relational database for further analysis.

DiasdemDocumentID,SourceFile,AppointmentOfManagingDirector,ChangeOfFirmName,...

"/home/.../volume100000.xml:0","/home/.../file10511.training.txt",1,0,0,1,0,...

"/home/.../volume100001.xml:0","/home/.../file10338.training.txt",1,0,0,1,0,...

...

"/home/.../volume100878.xml:0","/home/.../file10780.training.txt",1,0,0,1,0,...

...

Tag Documents 2.2: Summary

Task: Actions → Postprocess Patterns → Tag Documents 2.2

Use Case: The user wants to create result XML documents from semantically anno-
tated DIAsDEM documents as part of the DIAsDEM KDT process for
semantic tagging of domain-specific texts archives.

74

3 Case Study – 3.4 XML Tagging of Texts in the KDT Phase

Prerequisites: The default text units layer of each DIAsDEM document must contain
the section <ProcessedTextUnits>. All elements <ProcessedTextUnit>
must have the attributes Iteration, ClusterID, and ClusterLabel. A
collection-specific, concept-based XML DTD must have been derived.

Result: For each intermediate DIAsDEM document, a semantically annotated
XML file is output. Additionally, the project properties that correspond
to the input parameters are set and updated, respectively.

Remarks: After tagging result documents, only one task remains to be accomplished:
The quality of semantic tags should be evaluated using the task Tools →
Tagging Quality Evaluator 2.2.

Tag Documents 2.2: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: project property Default Collection File

Conceptual DTD File: Valid local file name of exiting file; file extension: .dcd

Random Sample File: Valid local file name of file to be created or replaced by DIAsDEM
Workbench; file extension: .dts; default value: project property Default
Random Sample File

Random Sample Size: Floating point number in the interval [0; 1]; proportion of text
units to be randomly drawn for quality evaluation; default value: project
property Default Random Sample Size

Advanced Options: If Create Tag-by-Document-Matrix as CSV-File is enabled, a file
TagByDocumentMatrix.csv is created in XML Document Directory that
contains a relational mapping of source file names onto discovered XML
tags. If Create Log Files for Tag Analysis with WUM is enabled, all
sequences of XML tags in result files are exported into a log file for subse-
quent sequence mining and association rules discovery using WUM: The
Web Utilization Miner. If Export XML Documents as GATE Files is en-
abled, semantically annotated GATE files are exported into the specified
directory.

3.4.3 Evaluating the Tagging Quality

Finally, the quality of semi-automatically created semantic XML markup needs to be
evaluated. Due to the absence of pre-tagged documents, a random sample of both
tagged and untagged text units has been drawn by Actions → Postprocess Patterns →

75

3 Case Study – 3.4 XML Tagging of Texts in the KDT Phase

Tag Documents 2.2 to allow a quality assessment. Now, a domain expert is asked to
evaluate the markup of one semantically marked-up text unit after the other. Each
text unit in the random sample is displayed exactly as contained in the corresponding
semantically marked-up XML document. Based on his or her domain expertise, the
expert evaluates the correctness of the (possibly non-existing) XML tag name with
respect to the accompanying concept-based DTD, which can be viewed instantaneously,
and the following four mutually exclusive and collectively exhaustive cases:

• True Positive: Text units enclosed in semantic XML tags are true positives if their
tag names represent correct concepts that domain experts typically associate with
the respective, marked-up text units.

• False Positive: If the semantic XML tag enclosing a text unit does not correspond
to the concept that domain experts typically associate with the marked-up text
unit, a false positive occurs.

• True Negative: A plain text unit not enclosed in a semantic XML tag is a true
negative if the concept-based XML document type definition does not comprise a
tag for the concept that domain experts typically associate with this text unit.

• False Negative: A false negative occurs when a plain text unit, which is not enclosed
in a semantic XML tag, in fact represents a semantic concept that is listed in the
concept-based XML document type definition.

If the automatically assigned XML tag name is incorrect, the correct one from the
finite tag set in the concept-based DTD is input as well. For text units enclosed in
semantic XML tags, the domain expert is further asked to assess the performance in
extracting the relevant named entities. To that end, the true number of relevant named
entities as well as the number of correct, partially correct, incorrect, and missing named
entities is input for each XML attribute that is listed in the tag-specific DTD attribute
definition. Analogous to the assessment of information extraction as performed in the
seminal GATE project [MTU+01, CMB+02, pp. 114–115], we distinguish four mutually
exclusive and collectively exhaustive types of identified named entities within XML tag
attributes:

• Completely Correct Named Entity : If an attribute value comprises all components
of a named entity without any extraction flaws, it is considered to be completely
correct.

• Partially Correct Named Entity : If an attribute value does not contain a few tokens
of the corresponding, typically complex named entity without conveying erroneous
information (e.g., concerning its type), it is partially correct.

• Incorrect Named Entity : If an attribute value conveys erroneous information about
a named entity, it represents an incorrect named entity. For example, a stand-alone
basic named entity (e.g., “place”) that is actually an integral part of a composite
named entity (e.g., “company”) is incorrectly extracted.

76

3 Case Study – 3.4 XML Tagging of Texts in the KDT Phase

• Missing Named Entity : An existing named entity, whose type is listed in the tag-
specific XML DTD attribute list, is considered to be a missing one if this entity is
not referenced by an attribute.

In addition, all evaluation results are persistently stored in the file system, the entire
process can be stopped and resumed at any time, all assessment decisions are documented
in a protocol, and the markup quality measures defined in this section are finally com-
puted for the entire random sample. Start the quality evaluation by selecting Tools →
Tagging Quality Evaluator 2.2, clicking the Start button, and choosing the following five
parameter files one after the other:

Parameter Value

Existing Text Unit Sample File ${PROJECT HOME}/outputSamplesFile/textUnitSample5Pct.dts
New or Existing File of

Evaluated Text Units ${PROJECT HOME}/outputSamplesFile/evaluatedTextUnits.det
Text Unit Sample File to be

Created for Next Evaluation ${PROJECT HOME}/outputSamplesFile/textUnitSample5PctB.dts
Existing Conceptual DTD File ${PROJECT HOME}/conceptualDtd.dcd
New or Existing Log

for Personal Notes ${PROJECT HOME}/outputSamplesFile/evaluationLog.txt

The parameter files Existing Text Unit Sample File and Existing Conceptual DTD File
have been created before. They are concisely described in Subsections 3.4.1 and 4.5.2,
respectively. Evaluating tagging quality can be a lengthy task, even for rather small
text unit samples. Hence, DIAsDEM Workbench supports the assessment of tagging
quality in multiple sessions. In the first assessment session, a new file New or Existing
File of Evaluated Text Units is created. It contains the domain expert’s decision for each
text unit as well as the text unit itself. After clicking the Stop button, text units that
remain to be evaluated in subsequent sessions are copied into Text Unit Sample File to
be Created for Next Evaluation. In the next session, this file Text Unit Sample File to
be Created for Next Evaluation must be chosen as Existing Text Unit Sample File.

Figure 3.26 depicts the Tagging Quality Evaluator 2.2 tool after opening the Exist-
ing Text Unit Sample File textUnitSample5Pct.dts in the first assessment session.
In the upper text area, the current text unit to be assessed is displayed along with
its semantic tag, if present. The entire set of XML tags as contained in the derived,
collection-specific XML DTD can be visualized by activating the XML DTD Elements
tab. Note that you probably have to evaluate different sentences since text units are
randomly chosen. For obvious reasons, tagged sentences can either be true positives
(i.e., having a correct XML tag) or false positives (i.e., having a false XML tag). On
the other hand, text units that have not been semantically annotated by DIAsDEM
Workbench can either be true negatives (i.e., appropriate XML tags are not contained
in DTD) or false negatives (i.e., appropriate XML tags are actually part of DTD). When

77

3 Case Study – 3.4 XML Tagging of Texts in the KDT Phase

Figure 3.26: Tagging Quality Evaluator 2.2 Tool (1st Session)

assessing the quality of XML tag attributes and extracted named entities, respectively,
according the concept-based XML DTD, the domain expert first counts the true num-
ber of named entities for each relevant named entity type. Subsequently, the number
of completely correct, partially correct, incorrect, and missing named entities has to be
determined for each relevant named entity type. Please assess three text units by evalu-
ating the quality of XML attributes and subsequently clicking the appropriate buttons
True, False Pos., and False Neg., respectively. Thereafter, click on Stop and open the
file ${PROJECT HOME}/outputSamplesFile/ evaluatedTextUnits.det:

TP,TN,FP,FN,Type,DiasdemXmlTag,CorrectXmlTag,DiasdemXmlTagIsMoreGeneral,

DiasdemXmlTagIsMoreSpecific,NumberOfExistingAttributeNEs,

NumberOfComplCorrectAttributeNEs,NumberOfPartCorrectAttributeNEs,

NumberOfIncorrectAttributeNEs,NumberOfMissingAttributeNEs,TextUnit

1,0,0,0,"TP","IfAppointmentOfOneManagingDirector_SolePowerToRepresent",

"IfAppointmentOfOneManagingDirector_SolePowerToRepresent",0,0,0,0,0,0,0,

"/home/.../volume100000.xml:0 <IfAppointmentOfOneManagingDirector_

SolePowerToRepresent>Ist nur ein Geschäftsführer bestellt, so vertritt er

die Gesellschaft einzeln.</IfAppointmentOfOneManagingDirector_

SolePowerToRepresent>"

1,0,0,0,"TP","IfAppointmentOfManyManagingDirectors_JointPowerToRepresent",

"IfAppointmentOfManyManagingDirectors_JointPowerToRepresent",0,0,0,0,0,0,0,

"/home/.../volume100002.xml:0 <IfAppointmentOfManyManagingDirectors_

JointPowerToRepresent>Sind mehrere Geschäftsführer bestellt, so wird die

Gesellschaft durch zwei Geschäftsführer oder durch einen Geschäftsführer in

Gemeinschaft mit einem Prokuristen vertreten.</IfAppointmentOfManyManaging

Directors_JointPowerToRepresent>"

The results of each assessment session are appended to evaluatedTextUnits.det. Af-
ter completing the quality evaluation, this file can be renamed evaluatedTextUnits.csv

78

3 Case Study – 3.4 XML Tagging of Texts in the KDT Phase

Figure 3.27: Tagging Quality Evaluator 2.2 Tool (2nd Session)

and imported into any spreadsheet application for detailed analysis. Note, the number
of text units contained in the entire training collection is listed in Existing Conceptual
DTD File as the property NUMBER OF TEXT UNITS. Close the Tagging Quality Evaluator
2.2 window to simulate the end of the current session. Thereafter, the second assess-
ment session can be started by again selecting Tools → Tagging Quality Evaluator 2.2,
clicking the Start button, and choosing the following five parameter files one after the
other:

Parameter Value

Existing Text Unit Sample File ${PROJECT HOME}/outputSamplesFile/textUnitSample5PctB.dts
New or Existing File of

Evaluated Text Units ${PROJECT HOME}/outputSamplesFile/evaluatedTextUnits.det
Text Unit Sample File to be

Created for Next Evaluation ${PROJECT HOME}/outputSamplesFile/textUnitSample5PctC.dts
Existing Conceptual DTD File ${PROJECT HOME}/conceptualDtd.dpd
New or Existing Log

for Personal Notes ${PROJECT HOME}/outputSamplesFile/evaluationLog.txt

Figure 3.27 illustrates the Tagging Quality Evaluator 2.2 window at the beginning
of the second assessment session. In the left pane, the results of previous sessions
as contained in ${PROJECT HOME}/outputSamplesFile/evaluatedTextUnits.det are
displayed as well. If you have time, you might assess the remaining 459 text units by
clicking the appropriate buttons True, False Pos., and False Neg., respectively. At any
time, activate the Present Results tab to have a look at the results of the markup quality
assessment thus far.

79

3 Case Study – 3.5 Summary of the Application Phase

3.4.4 Stopping the Batch Script Recorder

Before stopping the batch script recording, close the project by selecting File → Close
Project. Thereafter, stop recording the tasks performed during the KDT phase by click-
ing the button Stop of Batch Script Recorder. Save the recorded batch script by click-
ing Save and choosing the file name ${PROJECT HOME}/batchScripts/training.dsc.
Figure 3.28 depicts DIAsDEM Workbench after stopping the recording and saving the
script. The knowledge discovery phase of the DIAsDEM framework is now finished. As
explained in Section 3.5, the new batch script has to be edited before it can be executed
to tag text archives in the application phase.

Figure 3.28: DIAsDEM Workbench 2.2 after Saving the Batch Script

3.5 Summary of the Application Phase

Before this case is finished, 161 Commercial Register entries remain to be semantically
tagged in the application phase of the DIAsDEM framework. The corresponding files (ex-
tension: .application.txt) are located in the directory ${SAMPLES HOME}/de/case1.
The term application phase refers to the activity of iteratively applying previously cre-
ated text unit clusterers to convert new text documents into semantically tagged XML
documents. Output XML documents conform to the concept-based XML document
type definition that was derived in the KDT phase. Note, texts to be tagged in the
application phase must feature similar content as the training documents for obvious
reasons. However, you might, for example, process a stratified sample of text documents
in the KDT phase.

In contrast to the interactive training phase of the DIAsDEM framework, text docu-
ments are semantically annotated in an automated batch process, which does not require
any human intervention at all. The application phase of the DIAsDEM framework differs

80

3 Case Study – 3.5 Summary of the Application Phase

from training text unit clusterers in the following steps:

• When vectorizing text units, an existing iteration-specific text unit descriptor
weights file is applied to weight terms frequencies instead of creating a new one.

• When clustering text unit vectors, an existing iteration-specific text unit clusterer,
which is often referred to as “score code”, is applied to assign vectors to clusters.

• Monitoring the quality of text unit vector clusters is not necessary because there
is not need to create and edit a new cluster label file in the application phase.

• When tagging text units, an existing iteration-specific cluster label file is applied
to tag text units according to the cluster labels assigned in the KDT phase.

• Deriving a concept-based XML DTD is not necessary because output documents
must conform to the concept-based XML DTD derived in the KDT phase.

The term application parameters encompasses certain parameter files that are cre-
ated in the KDT phase for subsequent usage in the application phase of the DIAsDEM
framework. For each KDT process iteration, three files constitute specific application
parameters: Collection Frequencies File listing iteration-specific weights, Text Unit Clus-
terer File including an iteration-specific clustering model, and Cluster Label File con-
taining mappings from cluster IDs onto iteration-specific cluster labels. Furthermore,
Conceptual DTD File along with its three auxiliary files are application parameters as
well. When applying text unit clusterers to a new collection, the remaining parameter
settings and the sequence of tasks must exactly correspond to the training procedure.

3.5.1 Preparing the Application Phase

The application phase of this case study constitutes a new project, whose files should re-
side in a dedicated project directory. To avoid confusing training and application phase,
the abbreviation ${APP PROJECT HOME} corresponds to the directory /home/kwinkler/

diasdem/DIAsDEM.cases/tutorial/applicationProject in the remainder of this case
study. Create a new local directory ${APP PROJECT HOME} on your machine and copy
the entire directory template for application projects into this directory:

.cases/tutorial> pwd

/home/kwinkler/diasdem/DIAsDEM.cases/tutorial

.cases/tutorial> cp -R ../../DIAsDEM.workbench21/data/templates/applicationProject .

.cases/tutorial> ls

applicationProject trainingProject

81

3 Case Study – 3.5 Summary of the Application Phase

Thereafter, copy all application parameter files from the training project directory
into the new directory: These files must include a Collection Frequencies File for each
iteration, a Text Unit Clusterer File for each iteration, a Cluster Label File for each
iteration, and the Conceptual DTD File along with its three auxiliary files. Furthermore,
copy the previously recorded DIAsDEM batch script into the respective application
subdirectory.

.cases/tutorial> pwd

/home/kwinkler/diasdem/DIAsDEM.cases/tutorial

.cases/tutorial> cp trainingProject/*.dcfq applicationProject/

.cases/tutorial> cp trainingProject/*.wskm applicationProject/

.cases/tutorial> cp trainingProject/*.dcl applicationProject/

.cases/tutorial> cp trainingProject/conceptualDtd* applicationProject/

.cases/tutorial> ls applicationProject/

1clusterer.wskm batchScripts outputGateDocuments

1labels.dcl conceptualDtd.dcd outputNeex21Files

1weights.dcfq conceptualDtd.dcd.attributes outputSampleFiles

2clusterer.wskm conceptualDtd.dcd.elements outputSqlScripts

2labels.dcl conceptualDtd.dcd.xml outputXmlDocuments

2weights.dcfq conceptualDtdDocumentation.html README

applicationParameters inputCollection

DIAsDEM.cases/tutorial> cd trainingProject/batchScripts/

trainingProject/batchScripts> cp training.dsc application.dsc

trainingProject/batchScripts> ls

application.dsc README training.dsc

trainingProject/batchScripts> mv application.dsc ../../applicationProject/batchScripts/

3.5.2 Editing the Batch Script

DIAsDEM batch scripts are XML documents that conform to the XML document type
definition listed in Subsection 4.2 on page 91. They can be modified using any text editor
or preferrably using the dedicated editor (Solutions → Batch Script Processing → Edit
Batch Script). Open the file ${APP PROJECT HOME}/batchScripts/application.dsc in
your preferred text editor to quickly correct the project directory in this script. Replace
all occurrences of the training directory ${PROJECT HOME}, such as /home/kwinkler/

diasdem/DIAsDEM.cases/tutorial/trainingProject, with the directory that now cor-
responds to ${APP PROJECT HOME}, such as /home/kwinkler/diasdem/DIAsDEM.cases/
tutorial/applicationProject. Do not include the trailing slash in directory names
to ensure the proper replacement of all 47 ${PROJECT HOME} occurrences in the script.

Thereafter, open the DIAsDEM Batch Script Editor by selecting Solutions → Batch
Script Processing → Edit Batch Script, clicking the Open button, and choosing the
application script application.dsc located in the directory ${APP PROJECT HOME}/
batchScripts. Figure 3.29 illustrates the initially shown 1. Settings tab of the edi-
tor. After clicking on the 3. Tasks tab, the sequence of 19 recorded tasks appears as

82

3 Case Study – 3.5 Summary of the Application Phase

depicted in Figure 3.30. Select task 11 (“Monitor Cluster Quality 2.2”) by clicking once
on the respective table row. Delete the respective task from the batch script by clicking
the Delete button because monitoring cluster quality is not necessary in the application
phase. Afterwards, task 14 (“Monitor Cluster Quality 2.2”) must also be deleted. For
the same reason, delete the task “Derive Conceptual DTD 2.2” as well.

Figure 3.29: 1. Settings Tab of Edit Batch Script Window

Figure 3.30: 3. Tasks Tab of Edit Batch Script Window

The application script should now comprise the following sequence of 16 tasks: “New
Project”, “Create Document Collection”, “Import Plain Text Files”, “Create Text Units”,
“Tokenize Text Units”, “Replace Named Entities 2.1”, “Lemmatize Text Units”, “Com-
pute Term Frequency Statistics”, “Vectorize Text Units 2.2”, “Cluster Text Unit Vec-
tors (Weka)”, “Tag Text Units”, “Vectorize Text Units 2.2”, “Cluster Text Unit Vectors
(Weka)”, “Tag Text Units”, “Tag Documents 2.2”, and finally “Close Project”. A few

83

3 Case Study – 3.5 Summary of the Application Phase

tasks have to be edited by hand to adjust their parameters settings. To proceed, select
the row corresponding to task 1 (“New Project”) and click on Edit. Figures 3.31 and 3.32
illustrate the appearing task dialog, which allows you to modify the parameter settings.
For example, input the Project Name “Tutorial - Application Phase” and click on OK
to commit the change.

Figure 3.31: 1. Settings Tab of Edit Batch Script Task Dialog

Figure 3.32: 3. Parameters Tab of Edit Batch Script Task Dialog

In addition, the following five tasks have to edited as well: In the “Import Plain Text
Files” task, modify the File Name Extension of files to be imported from “.training.txt”
to “.application.txt”. Ignore the appearing warning message stating that the specified
Collection File does not exist. During script execution, this file is created in the preced-
ing task “Create Document Collection”. In the “Vectorize Text Units 2.2” task of both
iterations, change Collection Frequency from “Inverse Collection Frequency: Create New
File” to “Apply Existing Collection Frequencies File”. In the “Cluster Text Unit Vectors
(Weka)” task of both iterations, change Clustering Mode from “Clustering Phase (Create

84

3 Case Study – 3.5 Summary of the Application Phase

New Clustering Model)” to “Application Phase (Apply Existing Clustering Model)”. Fi-
nally, change the parameter Conceptual DTD File in the task “Tag Documents 2.2” from
${APP PROJECT HOME}/conceptualDtd.dpd to ${PROJECT HOME}/conceptualDtd.dpd.
After saving the script by clicking on Save, the modified batch script is now ready for
execution, which is explained in the next section. Finally, click the Exit button to close
the DIAsDEM batch script editor.

3.5.3 Executing the Batch Script

There are two options for executing batch scripts because DIAsDEM Workbench com-
prises both a command line and a GUI-based batch script processor. Firstly, the batch
script application.dsc can be executed by the command line script processor as indi-
cated in the installation notes:

/batchScripts> ../../../DIAsDEM.workbench22/bin/diasdembatch application.dsc verbose

*

* DIAsDEM Workbench 2.2 2.2.0.0 for Java 1.4.2 Released 27 May 2006

* Executing Batch Script: application.dsc ...

*

18:35:13 Task started: Execute Batch Script

18:35:13 Starting execution of task 1/16 (New Project)

18:35:13 Execution of task 1/16 (New Project) has terminated successfully

...

18:37:34 Execution of task 15/16 (Tag Documents 2.2) has terminated successfully

18:37:34 Starting execution of task 16/16 (Close Project)

18:37:34 Execution of task 16/16 (Close Project) has terminated successfully

18:37:34 Task successfully finished: Execute Batch Script

Secondly, the GUI-based script processor can be used to execute batch scripts. To
work around a DIAsDEM Workbench 2.2 bug, open the new project by selecting File →
Open Project and choosing the file ${APP PROJECT HOME}/project.dpr. Subsequently,
select the GUI-based script processor via Solutions → Batch Script Processing → Ex-
ecute Batch Script. Open the batch script application.dsc located in the directory
${APP PROJECT HOME}/batchScripts and click on OK to start the script execution.
Figure 3.33 illustrates DIAsDEM Workbench while executing this script.

Semantically tagging 161 Commercial Register entries takes approx. two minutes in
both cases. After script execution, altogether 161 semantically tagged XML documents
are located in the directory ${APP PROJECT HOME}. Using for example Tools → Miscel-
laneous → XML Document Viewer, open the output document ${APP PROJECT HOME}/
outputXmlDocuments/part1/document1.xml, which is partly depicted below.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE CommercialRegisterEntry SYSTEM "CommercialRegisterEntry.dtd">

85

3 Case Study – 3.5 Summary of the Application Phase

Figure 3.33: DIAsDEM Workbench 2.2 during GUI-Based Batch Script Execution

<CommercialRegisterEntry>

<MetaData>

<Name>DiasdemDocumentID</Name>

<Content>/home/.../applicationProject/inputCollection/volume100000.xml:0</Content>

</MetaData>

<MetaData>

<Name>SourceFile</Name>

<Content>/home/.../data/samples/de/case1/file11075.application.txt</Content>

</MetaData>

<TaggedDocument>

Dachdeckerarbeiten. <ShareCapital AmountOfMoney="25000 EUR">Stammkapital:

25.000 EUR.</ShareCapital><LimitedLiabilityCompany>Gesellschaft mit

beschränkter Haftung.</LimitedLiabilityCompany> ...

<SolePowerToRepresentCanBeGranted>Einzelvertretungsbefugnis kann erteilt

werden.</SolePowerToRepresentCanBeGranted><AppointmentOfManagingDirector

Person="10; Mario Schmeling; null; null; null; 05.07.1967; null; Bamme; null;

null [AND] 11; Thomas Weber; null; null; null; 16.06.1967; null; Rathenow;

null; null">Mario Schmeling, 05.07.1967, Bamme; und Thomas Weber, 16.06.1967,

Rathenow, sind zu Geschäftsführern bestellt.</AppointmentOfManagingDirector> ...

<PublicationMediaOfCommercialRegisterEntries>Nicht eingetragen: Die

Bekanntmachungen der Gesellschaft erfolgen im Bundesanzeiger.

</PublicationMediaOfCommercialRegisterEntries>

</TaggedDocument>

</CommercialRegisterEntry>

Furthermore, open the script ${APP PROJECT HOME}/batchScripts/application.dsc
in Solutions → Batch Script Processing → Edit Batch Script. As Figures 3.34 and 3.35
illustrate, the entire script and each performed task now contains additional information
(e.g., log messages and time stamps) about the execution.

86

3 Case Study – 3.6 Auxiliary Tasks

You have now reached the end of this introductory case study! We are looking forward
to getting your feedback on the DIAsDEM framework and DIAsDEM Workbench.

Figure 3.34: 4. Execution Tab of Edit Batch Script Window

Figure 3.35: 5. Results Tab of Edit Batch Script Dialog

3.6 Auxiliary Tasks

3.6.1 Removing Stopwords

DIAsDEM Workbench is capable of removing meaningless stopwords from processed text
units. As explained in Section 1, the DIAsDEM framework proposes utilizing a controlled
vocabulary (i.e., a domain-specific thesaurus) for dimension reduction. Thus, stopword
removal can be skipped in this case study due to the existence of a domain-specific the-
saurus. However, stopswords should be removed in case of establishing a new controlled

87

3 Case Study – 3.6 Auxiliary Tasks

vocabulary for a different domain. The text file ${PARAMETER HOME}/removeStopwords/
de/StopwordsDE.txt contains a default German stopword list, which should be modified
according to domain-specific needs.

Remove Stopwords: Summary

Task: Actions → Prepare Data Set → Remove Stopwords

Use Case: The user wants to remove meaningless stopwords from text units that are
contained in the section <ProcessedTextUnits>.

Prerequisites: The default text units layer of each DIAsDEM document must contain
the section <ProcessedTextUnits>. Text units should have been created
and tokenized in the DIAsDEM collection.

Result: Elements <ProcessedTextUnit> do not contain terms listed in Stopwords
File. Additionally, the project properties Default Collection File and
Default Stopwords File are set and updated, respectively.

Remove Stopwords: Parameters

Collection File: Valid local file name of existing collection file; file extension: .dcf; de-
fault value: project property Default Collection File

Stopwords File: Valid local file name of existing file that contains stopwords in the for-
mat described in Subsection 4.3.4 on page 101; file extension: .txt; de-
fault value: project property Default Stopwords File

3.6.2 Establishing an Initial Thesaurus

Before applying DIAsDEM Workbench to a new text collection, an application-specific
thesaurus has to be created. This task establishes an initial thesaurus on the basis of
term frequency statistics output by Actions → Understand Domain → Compute Term
Frequency Statistics. Terms are inserted into the new thesaurus as descriptor terms if
their collection-specific absolute frequency is greater than or equal to a minimum and less
than or equal to a maximum threshold. However, the resulting initial thesaurus should be
manually refined by removing, for example, semantically unimportant terms. Moreover,
the semantics of terms and concepts should be taken into account by defining relations
between less important non-descriptors and associated descriptors of importance.

Note, it is strongly recommended removing stopwords before establishing an initial
thesaurus for a new application domain. If semantically less important stopwords are
not removed, the resulting thesaurus contains them as well. After establishing an initial
thesaurus, it should be refined by hand using Tools → Thesaurus Editor 2.2. To quickly

88

3 Case Study – 3.6 Auxiliary Tasks

remove less important terms, thesaurus files might also be edited using any common text
editor: Simply delete all lines that correspond to terms to be removed.

Establish Initial Thesaurus: Summary

Task: Actions → Understand Domain → Establish Initial Thesaurus

Use Case: The user wants to establish an application-specific initial thesaurus that is
based on collection-specific term frequencies. Subsequently, this thesaurus
should be refined using Tools → Thesaurus Editor 2.2.

Prerequisites: Using Actions → Understand Domain → Compute Term Frequency Statis-
tics, a collection-specific term frequency file must have been created. Text
units should have been created, tokenized, and lemmatized in the DI-
AsDEM collection and named entities should have been replaced with
placeholders in all text units.

Result: Descriptors in Initial Thesaurus File correspond to terms in TF Statistics
File if their term frequency is greater than or equal to Min. Term Fre-
quency and less than or equal to Max. Term Frequency. The remaining
terms are not inserted into Initial Thesaurus File.

Establish Initial Thesaurus: Parameters

TF Statistics File: Valid local file name of existing file; file extension: .dws; default
value: project property Default Word Statistics File

Initial Thesaurus File: Valid local file name of file to be created or replaced by DIAs-
DEM Workbench; file extension: .dth

Min. Term Frequency: Non-negative integer; minimum absolute term frequency of de-
scriptors in Initial Thesaurus File

Max. Term Frequency : Non-negative integer; maximum absolute term frequency of de-
scriptors in Initial Thesaurus File

89

4 Technical Specification

4.1 DIAsDEM Documents

The default implementation of DIAsDEM Workbench 2.2 stores DIAsDEM documents
as part of so-called DIAsDEM volumes. The latter are XML files that conform to the
following XML document type definition DefaultDIAsDEMvolume.dtd:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!ELEMENT DefaultDIAsDEMvolume (DefaultDIAsDEMdocument*)>

<!ATTLIST DefaultDIAsDEMvolume NumberOfDocuments CDATA #IMPLIED>

<!ELEMENT DefaultDIAsDEMdocument (MetaData*, OriginalText, TextUnitsLayer*)>

<!ATTLIST DefaultDIAsDEMdocument NumberOfTextUnitsLayers CDATA #IMPLIED>

<!ELEMENT MetaData (Name, Content)>

<!ELEMENT Name (#PCDATA)> <!ELEMENT Content (#PCDATA)>

<!ELEMENT OriginalText (#PCDATA)>

<!ELEMENT TextUnitsLayer (MetaData*, OriginalTextUnits, ProcessedTextUnits?,

RollbackTextUnits*, NamedEntities?)>

<!ATTLIST TextUnitsLayer TextUnitsLayerID CDATA #IMPLIED

TextUnitsDescription CDATA #IMPLIED>

<!ELEMENT OriginalTextUnits (OriginalTextUnit+)>

<!ELEMENT OriginalTextUnit (#PCDATA)>

<!ATTLIST OriginalTextUnit TextUnitID CDATA #IMPLIED BeginIndex CDATA #IMPLIED

EndIndex CDATA #IMPLIED>

<!ELEMENT ProcessedTextUnits (ProcessedTextUnit+)>

<!ELEMENT ProcessedTextUnit (#PCDATA | NeRef)*>

<!ATTLIST ProcessedTextUnit TextUnitID CDATA #IMPLIED Iteration CDATA #IMPLIED

ClusterID CDATA #IMPLIED ClusterLabel CDATA #IMPLIED>

<!ELEMENT RollbackTextUnits (ProcessedTextUnit+)>

<!ELEMENT NamedEntities (NamedEntity+)>

<!ELEMENT NamedEntity (#PCDATA)>

<!ATTLIST NamedEntity NeID CDATA #IMPLIED NeType CDATA #IMPLIED>

<!ATTLIST RollbackTextUnits RollbackID CDATA #IMPLIED>

<!ELEMENT RollbackTextUnit (#PCDATA | NeRef)*>

<!ELEMENT NeRef EMPTY>

<!ATTLIST NeRef NeID CDATA #IMPLIED>

4 Technical Specification – 4.2 DIAsDEM Batch Scripts

4.2 DIAsDEM Batch Scripts

DIAsDEM Workbench is capable of executing batch scripts (i.e., XML documents) that
conform to the following XML document type definition DiasdemBatchScript.dtd:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!ELEMENT DIAsDEMscript (Label, DIAsDEMscriptTask*, Notes?, Log?, Status?,

StartTimeStamp?, EndTimeStamp?)>

<!ELEMENT DIAsDEMscriptTask (Label, Parameter, Result?, Notes?, Log?, Status?,

StartTimeStamp?, EndTimeStamp?)>

<!ATTLIST DIAsDEMscriptTask ClassName CDATA #IMPLIED Execute CDATA #IMPLIED>

<!ELEMENT Label (#PCDATA)>

<!ELEMENT ClassName (#PCDATA)>

<!ELEMENT Parameter (ParameterAttributes)>

<!ATTLIST Parameter ClassName CDATA #IMPLIED>

<!ELEMENT Result (ResultAttributes)>

<!ATTLIST Result ClassName CDATA #IMPLIED>

<!ELEMENT Notes (#PCDATA)>

<!ELEMENT Log (#PCDATA)>

<!ELEMENT Status (#PCDATA)>

<!ELEMENT StartTimeStamp (#PCDATA)>

<!ELEMENT EndTimeStamp (#PCDATA)>

<!ELEMENT ParameterAttributes (ParameterAttribute*)>

<!ELEMENT ParameterAttribute (AttributeName, AttributeValue)>

<!ELEMENT ResultAttributes (ResultAttribute*)>

<!ELEMENT ResultAttribute (AttributeName, AttributeValue)>

<!ELEMENT AttributeName (#PCDATA)>

<!ELEMENT AttributeValue (#PCDATA)>

4.3 Text Pre-Processing

4.3.1 Create Text Units

Abbreviations File: Valid local file name of existing text file, which contains known ab-
breviations in the following format: Each line of Abbreviations File contains exactly one
abbreviation whose capitalization is relevant. However, this task only matches abbrevi-
ations if they either occur at the beginning of the text or if they follow one of certain
special characters (i.e., the blank space and (),;:/-’"). Comment lines starting with
“#” are ignored and can hence be used to structure the file. Example:

91

4 Technical Specification – 4.3 Text Pre-Processing

Format: One case-sensitive, single- or multi-token abbreviation per line

Ph.D.

SAT.1

E.ON

a.d.

a. d.

a.D.

Full Stop Regex File: Valid local file name of existing text file, which contains regular
expressions in the following format: Each line of Full Stop Regex File contains a regular
expression matching full stops, exactly one tab stop, and thereafter a corresponding
replacement string that substitutes matched full stops with asterisks. Therefore, the
replacement string usually includes references, such as $1, to captured subsequences,
such as (ges|Ges) of the corresponding regular expression. Both the regular expression
and the replacement string must be Java-compliant constructs, as specified in the API
documentation of the Java package java.util.regex. Before these regular expressions
are matched against the text, full stops in abbreviations listed in Abbreviations File have
been replaced by asterisks. Comment lines starting with “#” are ignored. Example:

full stops in dates

([0-9]{1,2})\.([\]*[0-9]{1,2})\.([\]*[0-9]{2,4}) $1*$2*$3

([0-9]{1,2})\.([\]*[0-9]{1,2})\.([\]*) $1*$2*$3

full stops in abbreviations not preceded by a letter

(str|Str|pl|Pl)\.([\]*\d*) $1*$2

(ges|Ges)\.([\]*mbH) $1*$2

full stops in generic abbreviations such as titles (e.g., ’Dipl.-Kfm.’)

(Dipl)*([\]*|[\]*\-[\]*)([a-z~~A-Z~~+)\. $1*$2$3*

(Art)\.\ (\d) $1*\ $2

full stops in numbers (longest numbers have to matched first)

(\s*[0-9]+)\.(\s*[0-9]+) $1*$2

(\s*[0-9]{1,3})\.(\s) $1*$2

Default files of both Abbreviations File and Full Stop Regex File are provided in the
language-specific subdirectories of ${PARAMETER HOME}/createTextUnits.

4.3.2 Tokenize Text Units

Tokenize Regex File: Valid local file name of existing text file, which contains regular
expressions in the following format: Each line of Tokenize Regex File contains a regular
expression matching characters to be separated from letters, exactly one tab stop, and
thereafter a corresponding replacement string that separates tokens. Therefore, the
replacement string usually includes references, such as $1, to captured subsequences of
the corresponding regular expression. Both the regular expression and the replacement

92

4 Technical Specification – 4.3 Text Pre-Processing

string must be Java-compliant constructs, as specified in the API documentation of
the Java package java.util.regex. Comment lines starting with “#” are ignored.
Example:

Format: searchRegex<TAB>replaceString

(\S)(\.|\!|\?|\(|\)|\{|\}|\[|\]|\-|"|’|‘|’|:|;|,|\+|\/|\\) $1\ $2

(\.|\!|\?|\(|\)|\{|\}|\[|\]|\-|"|’|‘|’|:|;|,|\+|\/|\\)(\S) $1\ $2

Normalize Regex File: Valid local file name of existing text file, which contains regular
expressions in the same format as Tokenize Regex File described above. Example:

Format: searchRegex<TAB>replaceString

dates

([0-9]{1,2})\.[\]*(Januar|Jan[\.]?)[\]*([\d]{2,4}) $1.01.$3

([\][0-9]{1,2})\.[\]*([0-9]{1})\.[\]*([\d]{2,4}) $1.0$2.$3

numbers

(\s[0-9]{1,3})\.([0-9]{3,3})\.([0-9]{3,3}\s) $1$2$3

(\s[0-9]{1,3})\.([0-9]{3,3}\s) $1$2

amounts of money

([\-]?\s*{0,1}\d{1,}[,.\d]{1,})\s(DM|DEM|Deutsche\s+Mark|D\s+\-\s+Mark) $1\ DEM

([\-]?\s*{0,1}\d{1,}[,.\d]{1,})\s(Euro|EUR[O]?|Euros) $1\ EUR

Multi-Token Words File: Valid local file name of existing text file, which contains
known multi-token terms in the following format: Each line of Multi-Token Words File
contains exactly one known multi-token word whose capitalization is relevant. Multi-
token terms consist of multiple single tokens and blank spaces. Comment lines starting
with “#” are ignored. Example:

Format: One case-sensitive multi-token term per line

Gesellschaft mit beschränkter Haftung

mit beschränkter Haftung

Offene Handelsgesellschaft

offene Handelsgesellschaft

Token Replacement File: Valid local file name of existing text file, which contains
tokens that sould be replaced by other tokens. For example, composite nouns (e.g.,
Gewinnanstieg) could be split (e.g., Gewinn Anstieg) or English clitics (e.g., wont and ’
ll) can be expanded (e.g., will not and will). Each line of Token Replacement File contains
single- or multi-token terms to be searched for and the corresponding replacement tokens.
Search and replacement tokens are separated by exactly one tab stop. Comment lines
starting with “#” are ignored. Example:

93

4 Technical Specification – 4.3 Text Pre-Processing

Format: single- or multi-token to search<TAB> single- or multi-token to replace

Gewinnanstieg Gewinn Anstieg

Ge - winnanstieg Gewinn Anstieg

Ge - winn Gewinn

The language-specific subdirectories of ${PARAMETER HOME}/tokenizeTextUnits con-
tain defaults for Tokenize Regex File, Normalize Regex File, Multi Token Words File,
and Token Replacement File.

4.3.3 Replace Named Entities 2.1

Regex NE File: Valid local file name of existing file, which contains regular expres-
sions for instantiating basic named entities (i.e., dates, amounts of money, URLs, and
e-mail addresses). Each line contains a java.util.regex.Pattern regular expression that
matches sequences of tokens as well as the corresponding name of the basic named en-
tity separated by exactly one tab stop. The following basic named entities could be
instantiated using regular expressions: “number”, “date”, “time”, “amount of money”,
“paragraph”, “email”, “url”, “organization id”, “document id”, “court”, “postal code”,
“reference number”, “percentage”, “newspaper”, “wkn” (i.e., German securities identi-
fication number), “isin” (i.e., international securities identification number), as well as
“stock exchange”, “number of shares”, and “amount of money per share”. Comment
lines starting with “#” are ignored. Example:

Format: searchRegex<TAB>namedEntityType

normalized amounts of money

\d{1,}[,\.\d]{1,}\s(DEM|EUR|ATS) amount_of_money

normalized dates

\d{1,2}\.\d{1,2}\.\d{2,4} date

Organization Indicators File: Valid local file name of existing file, which contains terms
and term groups which frequently precede names of organizations. Each line contains one
indicator term (group), which are processed case-sensitively. Note, groups of indicator
terms, such as “Gesellschafterin:”, must be entered tokenized and in reverse order (e.g.,
“: Gesellschafterin”) because NEEX 2.1 employs a backward search algorithm. All
organization indicators containing full stops must be listed in Abbreviations File to
ensure correct sentence splits. Comment lines starting with “#” are ignored. Example:

Format: One case-sensitive, indicator term or reversed term group per line

: Gesellschafterin

Gesellschafterin

: Gesellschafter

Gesellschafter

Mitgesellschafter

94

4 Technical Specification – 4.3 Text Pre-Processing

Organization Suffixes File: Valid local file name of existing file, which contains a
list of frequent organization suffixes in the following format: Each line contains exactly
one suffix whose capitalization is relevant. NEEX 2.1 can process both single- (e.g.,
“KG”) and multi-token suffixes containing, for example, blank spaces (e.g., “GmbH &
Co. KG”). Note, the term “mit beschränkter Haftung” is a multi-token term whose real
counterpart “mit beschränkter Haftung” is listed in Multi-Token Words File All suffixes
containing full stops, such as “e.Kfr.”, must be listed in Abbreviations File to ensure
correct sentence splits. Comment lines starting with “#” are ignored. Example:

Format: One case-sensitive, single- or tokenized multi-token

organization suffix per line

GmbH & Co. KG

KG

Gesellschaft_mit_beschränkter_Haftung

mit_beschränkter_Haftung

AG

Organization Affixes File: Valid local file name of existing file, which contains a list
of terms that frequently follow organization suffixes, such as “GmbH” or “AG”, in the
following format: Each line contains exactly one affix whose capitalization is irrelevant.
NEEX 2.1 can process both single- (e.g., “Import”) and multi-token organization affixes
containing, for example, blank spaces (e.g., “Import und Export”). Organization affixes
containing special characters, such as “(Deutschland)” or “Wach- und Werkschutz”, must
be entered in their tokenized form: “(Deutschland)” or “Wach - und Werkschutz”. To
that end, Actions → Miscellaneous → Tokenize Parameter Text File might be employed.
Comment lines starting with “#” are ignored. Example:

Format: One case-sensitive, single- or tokenized multi-token affix per line

Import

Export

Import und Export

(Deutschland)

Wach - und Werkschutz

Organizations File: Valid local file name of existing file, which contains complete
names of large organizations. NEEX 2.1 can process both single- (e.g., “Adidas”) and
multi-token organizations containing, for example, blank spaces (e.g., “Adidas - Sa-
lomon”). They are processed case-sensitively. All organizations containing full stops
must be listed in Abbreviations File to ensure correct sentence splits. Organizations
containing special characters, such as “Adidas-Salomon” or “E.ON”, must be entered in
their tokenized form: “Adidas - Salomon” or “E.ON”. Note, “E.ON” is a abbreviation
listed in Abbreviations File. Include organizations in this file if their occurrences without

95

4 Technical Specification – 4.3 Text Pre-Processing

known organization suffixes have to be extracted or if they include terms listed in the
file containing organization indicators.

Format: One case-sensitive, single- or tokenized multi-token organization per line

Adidas

Adidas - Salomon

Allianz

Altana

BASF

Place Indicators File: Valid local file name of existing file, which contains terms and
term groups which frequently precede places to be extracted as named entities. Each
line contains one indicator term (group), which are not processed case-sensitively. Note,
groups of indicator terms, such as “mit Niederlassung in”, must be entered tokenized
and in reverse order (e.g., “in Niederlassung in”) because NEEX 2.1 employs a backward
search algorithm. All place indicators containing full stops must be listed in Abbrevi-
ations File to ensure correct sentence splits. Comment lines starting with “#” are
ignored. Example:

Format: One case-sensitive, indicator term or reversed term group per line

,

:

in

und

Sitz

Places File: Valid local file name of existing file, which contains a list of frequently
occurring places, which are not processed case-sensitively. NEEX 2.1 can process both
single- (e.g., “Berlin”) and multi-token places containing, for example, blank spaces
(e.g., “Baden Baden”). Places containing special characters, such as “Frankfurt am
Main”, “Frankfurt (Main)”, “Frankfurt/Oder”, or “Halle/Westf.” must be entered in
their tokenized form: “Frankfurt am Main”, “Frankfurt (Main)”, “Frankfurt / Oder”,
or “Halle / Westf.” as “Westf.” is contained in the list of known abbreviations. To that
end, Actions → Miscellaneous → Tokenize Parameter Text File. Place affixes such as
names of rivers, districts or countries should be entered separately in Place Affixes File.
Comment lines starting with “#” are ignored. Example:

Format: One case-sensitive, single- or tokenized multi-token organization per line

Berlin

Hamburg

Frankfurt am Main

Frankfurt / Oder

Halle / Westf.

96

4 Technical Specification – 4.3 Text Pre-Processing

Place Affixes File: Valid local file name of existing file, which contains frequently
occurring place affixes, such as names of rivers and districts. NEEX 2.1 can process both
single- (e.g., “Main”) and multi-token place affixes containing, for example, blank spaces
(e.g., “/ Main”). Place affixes are processed case-sensitively. Place affixes containing
special characters, such as “/Main” or “(Main)”, must be entered in their tokenized
form: “/ Main” or “(Main)”. To that end, Actions → Miscellaneous → Tokenize
Parameter Text File might be used. Each place affix can either be a weak or a strong
place affix, whereas places cannot end with a weak affix. Each line contains the affix
type (i.e., either “weak place affix” or “strong place affix”) and the affix itself separated
by exactly one tab stop. Comment lines starting with “#” are ignored. Example:

Format: placeAffixType<TAB>single- or tokenized multi-token place affix

weak_place_affix an der

weak_place_affix a. d.

weak_place_affix im

strong_place_affix Main

strong_place_affix (Main)

strong_place_affix / Main

strong_place_affix / M.

Person Name Indicators File: Valid local file name of existing file, which contains
terms and term groups which frequently precede person names. Person name indica-
tors are processed case-sensitively. Groups of indicator terms, such as “Gesellschafter:”,
must be entered tokenized and in reverse order (e.g., “: Gesellschafter”) because NEEX
2.1 employs a backward search algorithm. All person name indicators containing full
stops must be listed in Abbreviations File to ensure correct sentence splits. Each
line contains the type literal as well as the indicator term (group) separated by ex-
actly one tab stop. Valid person name indicator types are “weak pos person indicator”,
“strong pos person indicator”, and “strong neg person indicator”. Note, person name
indicators of type “weak pos person indicator” are not used in NEEX 2.1. The occur-
rence of negative indicators is checked before and after any person name candidate.
Hence they should comprise of one token only. Comment lines starting with “#” are
ignored. Example:

Format: placeAffixType<TAB>single- or tokenized, reversed multi-token indicator term

strong_pos_person_indicator Herr

strong_pos_person_indicator Mr.

strong_pos_person_indicator geb.

strong_neg_person_indicator Firma

strong_neg_person_indicator Straße

strong_neg_person_indicator Flughafen

97

4 Technical Specification – 4.3 Text Pre-Processing

Titles File: Valid local file name of existing file, which contains frequent academic and
professional titles. NEEX 2.1 can process single- (e.g., “Prof.”) and multi-token titles
containing, for example, blank spaces (e.g., “Prof. Dr.”). Titles are processed case-
sensitively. Title containing special characters, such as “Prof. Dr.”, “Dipl.-Ingenieurin”
or “Dipl.-Kfm. (FH)” must be entered in their tokenized form: “Prof. Dr.”, “Dipl.-
Ingenieurin”, or “Dipl.-Kfm. (FH)”. To that end, Actions → Miscellaneous → Tokenize
Parameter Text File might be employed. All titles containing full stops must either be
listed in Abbreviations File or be matched by a regular expression in Full Stop Regex File
(e.g., “Dipl.-Ingenieurin”). Comment lines starting with “#” are ignored. Example:

Format: One case-sensitive, single- or tokenized multi-token title per line

Prof. Dr.

Dipl.-Ingenieurin

Dipl.-Kfm. (FH)

Prof.

Dr.

Forenames File: Valid local file name of existing file, which contains a list of forenames
in the following format: Each line contains exactly one forename whose capitalization is
relevant. NEEX 2.1 can process both single- (e.g., “Stanka”) and multi-token forenames
containing, for example, blank spaces (e.g., “Stanka Cevdet”). Do not include multi-
token forenames consisting of multiple forenames, such as “Hans-Joachim” or “Hans
Joachim”, because they are extracted automatically. However, forenames containing
special characters, such as “Hans-Joachim”, must be entered in their tokenized form:
“Hans - Joachim”. To that end, Actions → Miscellaneous → Tokenize Parameter Text
File might be employed. Comment lines starting with “#” are ignored. Example:

Format: One case-sensitive, single- or tokenized multi-token forename per line

Stanka

Cevdet

Wolfgang

Vid

Joaquin

Middle Initials File: Valid local file name of existing file, which contains a list of middle
initials in the following format: Each line contains exactly one middle initial whose
capitalization is relevant. NEEX 2.1 can process both single- (e.g., ’A.’ or ’von’) and
multi-token middle initials containing for example blank spaces (e.g., ’de la’). Comment
lines starting with “#” are ignored. Example:

98

4 Technical Specification – 4.3 Text Pre-Processing

Format: One case-sensitive, single- or tokenized multi-token middle initial per line

de la

A.

von

De

de

Surnames File: Valid local file name of existing file, which contains frequent sur-
names. NEEX 2.1 can process both single- (e.g., “Schöppe”) and multi-token surnames
containing, for example, blank spaces (e.g., “Schöppe Rocher”). Surnames are processed
case-sensitively. Do not include multi-token surnames consisting of multiple surnames,
such as “Schöppe-Rocher” or “Schöppe Rocher”, because they are extracted automati-
cally. However, surnames containing special characters, such as “Schöppe-Rocher”, must
be entered in their tokenized form: “Schöppe - Rocher”. To that end, Actions → Miscel-
laneous → Tokenize Parameter Text File might be employed. Comment lines starting
with “#” are ignored. Example:

Format: One case-sensitive, single- or tokenized multi-token surname per line

Meier

Müller

Schulze

Schmidt

Schmitt

Surname Suffixes File: Valid local file name of existing file, which contains frequently
occurring suffixes of surnames. Capitalized tokens following a forename or an academic
title are assumed to be a surname if they end with a suffix listed in this file. Each
line contains exactly one surname suffix whose capitalization is relevant. Comment lines
starting with “#” are ignored. Example:

Format: One case-sensitive, single-token surname suffix per line

aci

ack

ad

wsky

yer

Name Affixes File: Valid local file name of existing file, which contains frequently
occurring name affixes. NEEX 2.1 can process both single- (e.g., “jun.”) and multi-token
name affixes containing, for example, blank spaces (e.g., “, jun.”). Each line contains
exactly one name affix whose capitalization is relevant. Name affixes containing special

99

4 Technical Specification – 4.3 Text Pre-Processing

characters,such as “,jun.” or “Ph.D.”, must be entered in their tokenized form: “, jun.”
or “Ph.D.” as both “jun.” and “Ph.D.” are contained in the list of known German
abbreviations. To that end, Actions → Miscellaneous → Tokenize Parameter Text File
might be employed. Comment lines starting with “#” are ignored. Example:

Format: One case-sensitive, single- or tokenized multi-token name affix per line

Ph.D.

, Ph.D.

sen.

, sen.

jun.

Professions File: Valid local file name of existing file, which contains frequently oc-
curring professions. NEEX 2.1 can process both single- (e.g., “Angestellter”) and multi-
token terms containing, for example, blank spaces (e.g., “Kaufmännischer Angestellter”).
Professions processed case-sensitively. Professions containing special characters, such as
“Dipl.-Kaufmann” or “Kfz.-Schlosser”, must be entered in their tokenized form: “Dipl.
- Kaufmann” or “Kfz. - Schlosser”. To that end, Actions → Miscellaneous → Tokenize
Parameter Text File. All professions containing full stops must either be listed in Abbre-
viations File or be matched by a regular expression in Full Stop Regex File. For obvious
reasons, do not include text unit descriptors, such as the term “Geschäftsführer” in this
file. Comment lines starting with “#” are ignored. Example:

Format: One case-sensitive, single- or tokenized multi-token profession per line

Angestellter

Angestellte

Dipl. - Kaufmann

Dipl. - Kauffrau

Composite NE File: Valid local file name of existing file, which contains rules for in-
stantiating composite named entities (i.e., persons, companies, and company relocations)
from previously identified basic named entities, such as person names, places, or dates.
Each line contains one DIAsDEM-specific rule that matches sequences of tokens and
basic named entities, as well as the corresponding composite named entity constructor
separated by exactly one tab stop.

The DIAsDEM-specific rule is a simple regular expression that must be matched
by a tokenized text unit to instantiate a composite named entity, such as “person”
or “company”. This expression can include case-sensitive tokens (e.g., “mit”, “Sitz”)
and generic placeholders for basic named entities (e.g., “<<organization>>”, “<<per-
son name>>”), as defined in org.hypknowsys.diasdem.core.neex.NamedEntity. The
corresponding named entity constructor instantiates a composite NE of type “person”,

100

4 Technical Specification – 4.3 Text Pre-Processing

“company”, or “company relocation”. Each constructor references terms and generic
placeholders of the corresponding regular expression, which are attribute values of the
new composite named entity. Note, tokens in both expressions must be separated from
each others by blank spaces because named entities are identified in tokenized text units.
Comment lines starting with “#” are ignored.

Format: DIAsDEM-specific rule<TAB>DIAsDEM-specific composite NE constructor

Note, there are three DIAsDEM-specific composite NE constructors available:

company(Name , Place , Street, DistrictCourt , CommercialRegisterID)

person(Name , Surname , Forename , Title , MiddleInitial , DoB , MothersName ,

Place , Street , Occupation)

company_relocation(Name , OriginPlace , OriginStreet , OriginDistrictCourt ,

OriginCommercialRegisterID , DestinationPlace , DestinationStreet ,

DestinationDistrictCourt , DestinationCommercialRegisterID)

date_period(PeriodBeginDate , PeriodEndDate)

amount_of_money_range(MinimumAmountOfMoney , MaximumAmountOfMoney)

percentage_range(MinimumPercentage , MaximumPercentage)

equity_stake(CompanyName , NumberOfShares , PercentageOfShares)

key_figure(Name , Value)

unit_of_company(NameOfUnit , PlaceOfUnitHeadquarter , StreetOfUnitHeadquarter ,

DistrictCourtOfUnit , CommercialRegisterIDOfUnit , NameOfParent ,

PlaceOfParentHeadquarter , StreetOfParentHeadquarter , DistrictCourtOfParent ,

CommercialRegisterIDOfParent)

<<organization>> company(0 , null , null , null)

<<organization>> <<place>> company(0 " " 1 , 1 , null , null)

<<organization>> in <<place>> (<<organization_id>>) company(0 , 2 , null , 4)

<<person_name>> person(0 , null , null , null , null , null , null , null , null)

The language-specific subdirectories of ${PARAMETER HOME}/replaceNamedEntities
contain defaults for all parameter files described above. However, NEEX 2.1 parameter
files are provided in the subdirectory neex21 only.

4.3.4 Remove Stopwords

Stopword File: Valid local file name of existing text file, which contains meaningless
stopwords. DIAsDEM Workbench 2.2 can only process single-token terms (e.g., “und”)
that do not contain blank spaces. Stopwords are not processed case-sensitively. Hence,
the stopword “aber” also matches the term “ABER”. Each line contains exactly one
stopword. Comment lines starting with “#” are ignored. Example:

Format: One case-sensitive, single-token stopword per line

ab

abend

aber

acht

alle

101

4 Technical Specification – 4.3 Text Pre-Processing

Defaults for Stopword File are provided in the language-specific subdirectories of the
directory ${PARAMETER HOME}/removeStopwords.

4.3.5 Lemmatize Text Units

TreeTagger Input File: The name of this temporary file must be set if Use TreeTagger
to Determine Lemma Form is enabled. It must be a valid local file name of either a
new or an existing file that are replaced by the task. This file is created by DIAsDEM
Workbench and includes text to be POS-tagged by TreeTagger. Example:

<Document_/home/.../tutorial/trainingProject/inputCollection/volume100000.xml:0>

<ProcessedTextUnit_0>

Die Heizungs - und Sanitärinstallation , Gastechnik und Gassicherheitstechnik ...

</ProcessedTextUnit_0>

<ProcessedTextUnit_1>

Weiter ist Gegenstand die Konzeption , Montage , Instandsetzung und Instandhaltung ...

</ProcessedTextUnit_1>

<ProcessedTextUnit_2>

Stammkapital : <<0>> .

</ProcessedTextUnit_2>

<ProcessedTextUnit_3>

Gesellschaft_mit_beschränkter_Haftung .

</ProcessedTextUnit_3>

<ProcessedTextUnit_4>

Der Gesellschaftsvertrag ist am <<1>> abgeschlossen und am <<2>> abgeändert .

</ProcessedTextUnit_4> ...

<ProcessedTextUnit_10>

Nicht eingetragen : Die Bekanntmachungen der Gesellschaft erfolgen im Bundesanzeiger .

</ProcessedTextUnit_10>

</Document_/home/.../tutorial/trainingProject/inputCollection/volume100000.xml:0> ...

TreeTagger Output File: The name of this temporary file must be set if Use TreeTagger
to Determine Lemma Form is enabled. It must be a valid local file name of either a new
or an existing file that is extended by this task. This file is created by TreeTagger and
includes the results of POS-tagging for subsequent parsing by DIAsDEM Workbench.
Example:

<Document_/home/.../tutorial/trainingProject/inputCollection/volume100000.xml:0>

<ProcessedTextUnit_0>

Die ART d

Heizungs NN <unknown>

- $(-

und KON und

Sanitärinstallation NN Sanitärinstallation

...

102

4 Technical Specification – 4.3 Text Pre-Processing

</ProcessedTextUnit_0>

<ProcessedTextUnit_1>

Weiter ADV weiter

ist VAFIN sein

Gegenstand NN Gegenstand

die ART d

...

Known Lemma Forms: The name of this parameter file must be set if Look Up Lemma
Form in List is enabled. It must be a valid local file name of an existing file that contains
terms along with their lemma forms in the following format: Each line lists one term,
exactly one tab stop, and thereafter the corresponding grammatical root form. Terms
and lemma forms must not be multi-token terms that include blank spaces. However,
blank spaces in multi-token terms can be replaced with underscores (e.g., “for example”).
Note that capitalization of terms is irrelevant, but the capitalization of lemma forms is
retained when replacing the corresponding terms. Comment lines starting with “#” are
ignored. Example:

Format: term<TAB>lemmaFormOfTerm

Datenverarbeitungssysteme Datenverarbeitungssystem

Arbeitsgemeinschaften Arbeitsgemeinschaft

Formaten Format

Deetz Deetz

Fanartikel Fanartikel

Biographien Biographie

Unknown Lemma Forms: The name of this temporary file must be set if Look Up
Lemma Form in List is enabled. It must be a valid local file name of either a new or an
existing file that is extended by the task. This file is created or extended by DIAsDEM
Workbench and includes terms occuring in the collection that are not listed in the file
of Known Lemma Forms as well as the context of their occurrence (i.e., the sentence)
separated by exactly one tab stop. This file could be used to update the file Known
Lemma Forms with new terms. Example:

Format: unknownTerm<TAB>correspondingTokenizedTextUnit

lit. 1. Der An - und Verkauf von Immobilien sowie die Beteiligung an ...

Art. Der Gesellschaftsvertrag ist am <<1>> abgeschlossen und am <<2>> ...

Dip. Dip. - <<26>> und Dr. jur. <<27>> , sind zu Geschäftsführern bestellt .

Dipl.-Kaufm. Dipl.-Kaufm. <<47>> , ist zum Geschäftsführern bestellt .

103

4 Technical Specification – 4.4 Iterative Clustering

4.4 Iterative Clustering

4.4.1 Vectorize Text Units 2.2

Vector File Format : DIAsDEM Workbench supports the export of four file formats:
comma separated values (CSV files) and fixed width values (TXT files), as well as
regular and sparse ARFF files in the Weka-specific format described in [WF05]. See
below an example of a text unit vector file in comma separated values format:

DocumentType,Document,TextUnit,D1_Aktie,D2_Gesellschafter,D3_Inhaber,...,D73_Anspruch

"null","/home/.../volume100000.xml:0",0,...

"null","/home/.../volume100984.xml:0",7,0,0,0,0,0,0,0.879,0,1.407,0,0,0,0,0,0,0,0,...

"null","/home/.../volume100984.xml:0",8,0,...

"null","/home/.../volume100984.xml:0",9,0,0,0,0,0,0,0,0,0,2.500,0,2.539,0,0,0,0,0,...

In the current version of DIAsDEM Workbench, “DocumentType” is always “null”
due to legacy reasons. The attribute “Document” contains the DIAsDEM document
ID. Values of the attribute “TextUnit” uniquely identify text units within a given doc-
ument by their sequence number. Note that “Document” and “TextUnit” constitute a
composite primary key for text units in the scope of the respective Collection File. The
following metadata file summarize information about attributes of the above CSV file:

DocumentType

Document

TextUnit

D1_Aktie = Aktie; Descriptor Frequency = 37; Descriptor Weight = 5.521

...

D73_Anspruch = Anspruch; Descriptor Frequency = 9; Descriptor Weight = 6.935

As of DIAsDEM Workbench 2.2, text unit vectors should not be exported as TXT
files with fixed width values. The task Vectorize Text Units cannot properly process
DIAsDEM documents whose IDs comprise more than 25 characters. However, below is
an example of a text unit vector file in fixed width values format:

DocumentType Document TextUnit D1_Aktie D2_Gese...

null /volume100000.xml:0 0 0 0 ...

null /volume100984.xml:0 7 0 0 ...

null /volume100984.xml:0 8 0 0 ...

null /volume100984.xml:0 9 0 0 ...

As indicated above, simple blank spaces separate attribute values from each others.
The following metadata file corresponds to the TXT-file above and additionally contains
information about the width of each attribute. Note again that file names of intermediate
XML files cannot exceed 25 characters, and the width of attributes cannot be modified.

104

4 Technical Specification – 4.4 Iterative Clustering

1-20 DocumentType

21-45 Document

46-55 TextUnit

56-75 D1_Aktie = Aktie; Descriptor Frequency = 37; Descriptor Weight = 5.521

...

See below an example of a Weka-specific text unit vector file in regular ARFF-format:

@relation ’DIAsDEM’

@attribute DocumentType string

@attribute Document string

@attribute TextUnit string

@attribute D1_Aktie real ...

@attribute D73_Anspruch real

@data

null,/home/.../volume100000.xml:0,...

null,/home/.../volume100984.xml:0,7,0,0,0,0,0,0,0.879,0,1.407,0,0,0,0,0,0,0,0,0,...

null,/home/.../volume100984.xml:0,8,0,...

null,/home/.../volume100984.xml:0,9,0,0,0,0,0,0,0,0,0,2.500,0,2.539,0,0,0,0,0,0,...

The following metadata file corresponds to the regular ARFF-file above:

DocumentType

Document

TextUnit

D1_Aktie = Aktie; Descriptor Frequency = 37; Descriptor Weight = 5.521

...

D73_Anspruch = Anspruch; Descriptor Frequency = 9; Descriptor Weight = 6.935

See below an example of a Weka-specific text unit vector file in sparse ARFF-format:

@relation ’DIAsDEM’

@attribute DocumentType string

@attribute Document string

@attribute TextUnit string

@attribute D1_Aktie real ...

@attribute D73_Anspruch real

@data

{0 null, 1 /home/.../volume100000.xml:0, 2 0}

{0 null, 1 /home/.../volume100000.xml:0, 2 3, 20 2.063002815336676,

21 2.89591193827178, 25 0.6341488397979895, 62 3.0012724539296065}

{0 null, 1 /home/.../volume100003.xml:0, 2 1, 10 3.0012724539296065,

64 2.89591193827178, 69 4.099884742597716}

105

4 Technical Specification – 4.4 Iterative Clustering

Thesaurus File: The existing DIAsDEM-specific thesaurus file must be identified by a
valid local file name. Except for comment lines starting with “#”, each line corresponds
to exactly one thesaurus entry that can either be a descriptor (i.e., preferred term) or
a non-descriptor (i.e., non-preferred term). Non-descriptor terms must always point to
an associated descriptor in the same thesaurus file that should be used for indexing and
term frequency counting instead. Indirect references from one non-descriptor term via
other non-descriptors to the corresponding descriptor term are supported. Note that
DIAsDEM-specific thesauri must only include grammatical root forms of terms (i.e.,
their so-called lemma forms) as determined by the task Actions → Prepare Data Set →
Vectorize Text Units 2.2. Thesauri can be created by Actions → Understand Domain →
Establish Initial Thesaurus and modified by Tools → Thesaurus Editor 2.2. Example:

Terms of Thesaurus /home/.../data/parameters/thesauri/de/Case123Thesaurus.dth

19535 "<<company>>" 1 "TY=D" "HL=-" "SY=-" "BT=-" "NT=-" "UD=-" "SN=Case1"

19534 "<<person>>" 1 "TY=D" "HL=-" "SY=-" "BT=-" "NT=-" "UD=-" "SN=Case1"

19461 "Ablehnung" 1 "TY=D" "HL=-" "SY=-" "BT=-" "NT=-" "UD=-" "SN=Case2"

10628 "abschließen" 1 "TY=D" "HL=-" "SY=-" "BT=-" "NT=-" "UD=-" "SN=Case1 Case2" ...

12299 "Änderung" 1 "TY=D" "HL=-" "SY=-" "BT=-" "NT=-" "UD=-" "SN=Case1 Case2" ...

10859 "Zwecke" 1 "TY=N" "HL=-" "SY=-" "BT=-" "NT=-" "UD=Tätigkeit" "SN=-"

10797 "ändern" 1 "TY=N" "HL=-" "SY=-" "BT=-" "NT=-" "UD=Änderung" "SN=-"

Thesaurus terms can either be lemma forms of words (e.g., “Ablehnung” and “ändern”)
or named entity type placeholders such as “<<company>>” and “<<person>>”. Con-
sider, for example, the thesaurus entry “Ablehnung”: “19461” is a unique term identifier
within the thesaurus, the term type field “TY=D” denotes that “Ablehnung” is a de-
scriptor term and the scope notes field “SN=Case2” can be used to filter valid descriptors
in different case studies and clustering iterations, respectively. The use descriptor field
(“UD=-”) remains empty for descriptor terms for obvious reasons. Furthermore, con-
sider the thesaurus entry “ändern” which is a non-descriptor (“TY=N”). The descriptor
term “Änderung” should be used instead of “ändern” because of the use descriptor field
“UD=Tätigkeit”. Note, hierarchy level (“HL=-”), synonyms (“SY=-”), broader term
(“BT=-”), and narrower term (“NT=-”) are not used in DIAsDEM Workbench 2.2.

4.4.2 Cluster Text Unit Vectors (Weka)

Text Unit Vectors File: Valid local file name containing text unit vectors to be clustered
in regular ARFF format as specified above in Subsection 4.4.1. Note that the internal
Weka-based clustering algorithms cannot process other file formats.

Clustering Results File: Valid local file name of a file to be created or replaced by DIAs-
DEM Workbench, which contains the mappings of text units onto clusters in CSV format
as specified below in Subsection 4.4.3. Note that all internal Weka-based clustering
algorithms cannot output other file formats.

106

4 Technical Specification – 4.4 Iterative Clustering

Text Unit Clusterer File: Valid local file name of a file to be created or replaced
by DIAsDEM Workbench, which contains a serialized instance of the Java class corre-
sponding to Clustering Algorithm. Text Unit Clusterer File is an output parameter in
clustering mode, but an input parameter in application mode. Note, there must be a
correspondance between the specified Clustering Algorithm in clustering and application
mode. In the latter phase, an instance of the respective text unit clusterer is created as
follows:

modelInputStream = new ObjectInputStream(new FileInputStream(

CastParameter.getClusterModelFileName()));

switch (CastParameter.getClusteringAlgorithm()) {

case ClusterTextUnitVectorsWekaParameter.WEKA_SIMPLE_KMEANS: {

clusterer = (SimpleKMeans)modelInputStream.readObject();

break;

}

case ClusterTextUnitVectorsWekaParameter.WEKA_COBWEB: {

clusterer = (Cobweb)modelInputStream.readObject();

break;

}

case ClusterTextUnitVectorsWekaParameter.WEKA_EM: {

clusterer = (EM)modelInputStream.readObject();

break;

}

}

modelInputStream.close();

4.4.3 Monitor Cluster Quality 2.2

Result File Format : Cluster Result File maps text unit vectors onto their respective
clusters that are identified by integers. Currently, each text unit vector can only be
assigned to exactly one cluster. DIAsDEM Workbench can import result files in the
following two formats: comma separated values (CSV files) and fixed width values (TXT
files). In both cases, Cluster Result File must contain exactly three attributes for each
text unit vector. The DIAsDEM document ID is the first attribute. It is followed by
the text unit identifier as the second, and the cluster ID associated with the respective
text unit vector as the third attribute. The first two attributes (i.e., file name and text
unit identifier) must exactly correspond to the attributes “Document” and “TextUnit”
of text unit vector files, as described in Subsection 4.4.1. Valid cluster IDs are integers
being greater than zero. Text units vectors in Cluster Result File should be ordered as
in the corresponding Text Unit Vectors File.

Note, DIAsDEM Workbench can only process files that completely conform to the
syntax exemplified by the following two file excerpts. Hence, clustering algorithms must
either be configured to create appropriate result files or intermediate output files must

107

4 Technical Specification – 4.4 Iterative Clustering

be post-processed by, for example, Perl scripts. See below an example of a cluster result
file in comma separated values format:

/home/.../tutorial/trainingProject/inputCollection/volume100000.xml:0,0,25

/home/.../tutorial/trainingProject/inputCollection/volume100000.xml:0,1,25

/home/.../tutorial/trainingProject/inputCollection/volume100000.xml:0,2,9

/home/.../tutorial/trainingProject/inputCollection/volume100000.xml:0,3,48

/home/.../tutorial/trainingProject/inputCollection/volume100000.xml:0,4,34

As of DIAsDEM Workbench 2.2, clustering results should not be exported as TXT
files with fixed width values. The tasks Monitor Cluster Quality 2.2 and Tag Text
Units cannot properly process DIAsDEM documents whose IDs comprise more than 25
characters. However, below is an example of a text unit vector file in fixed width values
format:

null /volume100000.xml:0 1 25

null /volume100000.xml:0 2 25

null /volume100000.xml:0 3 9

null /volume100000.xml:0 4 48

null /volume100000.xml:0 5 34

As indicated above, only blank spaces are allowed to separate attribute values from
each others. The following metadata file corresponds to the TXT file above and contains
information about the width of each attribute. Note that file names of intermediate XML
files cannot exceed 25 characters. Currently, the width of attributes cannot be changed
by the user. In the current version of DIAsDEM Workbench, “DocumentType” has
always the “null” value due to legacy reasons. In contrast to fixed width files, CSV files
must not contain the attribute “DocumentType”.

1-20 DocumentType

21-45 Document

46-55 TextUnit

56-58 ClusterID

Cluster Result File: Valid local file name of a file to be created or replaced by DIAs-
DEM Workbench that conforms to Result File Format.

Thesaurus File: Valid local file name of existing DIAsDEM-specific thesaurus file as
described in Subsection 4.4.1.

108

4 Technical Specification – 4.5 XML Tagging of Texts

4.4.4 Tag Text Units

Result File Format : One of two result file formats (i.e., comma separated values and
fixed width values), which are supported by DIAsDEM Workbench and described in
Subsection 4.4.1.

Cluster Result File: Valid local file name of a file to be created or replaced by DIAs-
DEM Workbench. Cluster Result File must conform to Result File Format.

Cluster Label File: Valid local file name of existing file created by DIAsDEM Work-
bench in Actions → Postprocess Patterns → Monitor Cluster Quality 2.2 and possibly
modified by Tools → Cluster Label Editor 2.2.

4.5 XML Tagging of Texts

4.5.1 Derive Conceptual DTD 2.2

Conceptual DTD File: Valid local file name of file to be created or replaced by DIAs-
DEM Workbench, which contains metadata about the concept-based XML document
type definition, its XML tags, and their attribues in a DIAsDEM-specific format. The
following Conceptual DTD File has been created in this case study:

#This is an automatically created file: Please do not edit this file manually!

#Sun Sep 02 16:44:06 CEST 2007

NUMBER_OF_UNTAGGED_TEXT_UNITS=1171

ELEMENTS_FILE_NAME=conceptualDtd.dcd.elements

MIN_ATTRIBUTE_REL_SUPPORT=0.1

ROOT_ELEMENT=CommercialRegisterEntry

CONCEPTUAL_DTD_FILE_NAME=/home/.../tutorial/trainingProject/conceptualDtd.dcd

NUMBER_OF_TEXT_UNITS=9254

XML_DTD_FILE_NAME=conceptualDtd.dcd.xml

CONCEPTUAL_DTD_REMARKS=Created Sun Sep 02 16\:43\:59 CEST 2007

NUMBER_OF_TAGGED_TEXT_UNITS=8083

NUMBER_OF_DOCUMENTS=985

TRAINING_COLLECTION_FILE_NAME=/home/.../tutorial/trainingProject/collection.dcf

ATTRIBUTES_FILE_NAME=conceptualDtd.dcd.attributes

The file /home/.../tutorial/trainingProject/conceptualDtd.dcd.elements con-
tains metadata about DTD elements (i.e., XML tags). The file /home/.../tutorial/

trainingProject/conceptualDtd.dcd.attributes contains metadata about attributes
of DTD elements (i.e., XML tags)

4.5.2 Tag Documents 2.2

Conceptual DTD File: Valid local file name of existing file, which is created by DIAs-
DEM Workbench and contains metadata about the concept-based XML document type

109

4 Technical Specification – 4.5 XML Tagging of Texts

definition, its XML tags, and their attribues in a DIAsDEM-specific format.
Random Sample File: Valid local file name of file to be created or replaced by DIAs-

DEM Workbench, which contains a random sample from all text units (i.e., both tagged
and untagged ones) in a DIAsDEM-specific format. Along with Conceptual DTD File,
this file is input to the task Tools → Tagging Quality Evaluator 2.2. For example, see
below three lines of Random Sample File as created in this case study. Note that the first
three line correspond semantically annotated sentences whereas the fourth ones contains
an untagged sentence.

/home/.../tutorial/trainingProject/inputCollection/volume100002.xml:0

<IfAppointmentOfOneManagingDirector_SolePowerToRepresent>Ist nur ein

Geschäftsführer bestellt, so vertritt er die Gesellschaft einzeln.

</IfAppointmentOfOneManagingDirector_SolePowerToRepresent>

/home/.../tutorial/trainingProject/inputCollection/volume100003.xml:0

<PurposeOfCompany>(Gegenstand: Durchführung von vermessungstechnischen

Arbeiten).</PurposeOfCompany>

/home/.../tutorial/trainingProject/inputCollection/volume100005.xml:0

<NameOfMerchant Person="3; Stefan Thümmler; null; null; null; null;

null; null; null; null">Inhaber: Stefan Thümmler, Kaufmann, Wustermark.

</NameOfMerchant>

/home/.../tutorial/trainingProject/inputCollection/volume100135.xml:0

Die Gründer der Gesellschaft, die sämtliche Aktien übernommen haben ist ECC

Treuhand- und Verwaltungsgesellschaft mbH mit Sitz in München.

110

List of Abbreviations

DFG Deutsche Forschungsgemeinschaft (German Research Society)

DIAsDEM Datenintegration von Altlastdaten und semistrukturierten Dokumenten mit
Mining Verfahren (German project acronym that stands for “integration of
legacy data and semi-structured documents with data mining techniques”)

DTD Document Type Definition

FN false negative

FP false positive

geb. geboren (born on a date)

ID identifier

KDD Knowledge Discovery in Databases

KDT Knowledge Discovery in Textual Databases

NE named entity

NEEX Named Entity Extractor (module of DIAsDEM Workbench)

POS part-of-speech

Regex regular expression

TF term frequency

TFxIDF term frequency multiplied by inverse document frequency

TN true negative

TP true positive

Weka Waikato Environment for Knowledge Analysis

XML Extensible Markup Language

List of Relevant German Vocabulary

The following list contains German nouns and verbs that might be useful to understand
the meaning of Commercial Register entries in this case study. This list is based on a
translation of the German Commercial Code by Peltzer, Doyle and Voight, which also
includes a concise introduction to the German Commercial Code [PDV00, pp. 1–32].

Aktiengesellschaft (AG) German joint stock corporation

Aktionär (Aktionäre) shareholder of German joint stock corporation (AG)

Amtsgericht District Court in Germany; a local Commercial Register is usually main-
tained by the respective District Court

Änderung change or modification of sth. (e.g., modification of partnership agreement)

Anspruch legal claim against sb.

Bauvorhaben building project; here: purpose of certain companies

Beginn here: commencement of operations

beginnen (beginnt) here: to commence with operations

Bekanntmachung (Bekanntmachungen) information that has to be officially published
by companies according to the German Commercial Code

Bundesanzeiger official German newspaper that weekly publishes Commercial Register
entries and corporate news

bestellen (bestellt) here: to appoint sb. to a position of responsibility (e.g., to appoint
sb. as managing director of a German limited liability company)

eingetragen here: (e.g., legal facts) to be registered with the Commercial Register

Einzelvertretungsbefugnis sole power to legally represent a company (in contrast to
joint power to represent a company)

erfolgen (erfolgt) here: to publish information according to the German Commercial
Code

List of Relevant German Vocabulary

Erhöhung increase in sth. (e.g., increase in share capital)

erteilen (erteilt) here: to confer (e.g., Prokura or power to represent a company)

Firma here: legal name of a company as registered in the respective Commercial Register;
legal name under which a merchant transacts business and executes agreements; a
merchant may sue and may be sued under his firm name

Geschäftsführer, Geschäftsführerin managing director of German limited liability com-
pany (GmbH)

Gesellschafter, Gesellschafterin partner in German commercial partnership (e.g., OHG
and KG) or in German limited liability company (GmbH)

Gesellschaft here: (commercial) partnership and company, respectively

Gesellschaft mit beschränkter Haftung (GmbH) German limited liability company

Gesellschafterversammlung meeting of (commercial) partners and share holders, re-
spectively

Gesellschaftsvertrag commercial partnership agreement

Handel mit Waren trading of goods

Kommanditist (Kommanditisten) fully liable partner in German limited partnership
(KG)

Kommanditgesellschaft (KG) German limited partnership

Offene Handelsgesellschaft (OHG) German commercial partnership

Prokura power to legally represent a company regulated by the German Commercial
Code; Prokura includes all judicial and non-judicial transactions that are related
to the operations of a commercial business; Prokura might be conferred with either
sole or joint power of representation

Stammkapital share capital of German limited liability company (GmbH)

Tätigkeit here: purpose of company

vertreten (vertritt) here: to legally represent a company

Vorstand managing board of German joint stock company (AG)

Zweigniederlassung branch office of a company

113

Bibliography

[CMB+02] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin Tablan,
Cristian Ursu, and Marin Dimitrov. Developing Language Processing Com-
ponents with GATE (a User Guide): For GATE version 2.0. The University
of Sheffield, Sheffield, 2002.

[ESK04] Levent Ertöz, Michael Steinbach, and Vipin Kumar. Finding topics in collec-
tions of documents: A shared nearest neighbor approach. In Weili Wu, Hui
Xiong, and Shashi Shakhar, editors, Clustering and Information Retrieval,
volume 11 of Network Theory and Applications, pages 83–103. Kluwer Aca-
demic Publishers, Boston, Dordrecht, 2004.

[GSW01] Henner Graubitz, Myra Spiliopoulou, and Karsten Winkler. The DIAsDEM
framework for converting domain-specific texts into XML documents with
data mining techniques. In Proceedings of the First IEEE International
Conference on Data Mining, pages 171–178, San Jose, CA, USA, Novem-
ber/December 2001.

[GWS01] Henner Graubitz, Karsten Winkler, and Myra Spiliopoulou. Semantic tag-
ging of domain-specific text documents with DIAsDEM. In Proceeding of
the 1st International Workshop on Databases, Documents, and Information
Fusion (DBFusion 2001), pages 61–72, Magdeburg, Germany, May 2001.

[ISO86] ISO. Documentation: Guidelines for the establishment and development of
monolingual thesauri. Technical Report ISO 2788-1986 (E), International
Organisation for Standardization, 1986.

[JP73] R. A. Jarvis and A. Patrick, Edward. Clustering using a similarity mea-
sure based on shared near neighbors. IEEE Transactions on Computers,
C-22(11):1025–1034, November 1973.

[Koh01] Teuvo Kohonen. Self-Organizing Maps, volume 30 of Springer Series in
Information Sciences. Springer-Verlag, Berlin, Heidelberg, third edition,
2001.

[LYRL04] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new
benchmark collection for text categorization research. Journal of Machine
Learning Research, 5:361–397, April 2004.

Bibliography

[MTU+01] Diana Maynard, Valentin Tablan, Christan Ursu, Hamish Cunningham, and
Yorick Wilks. Named entity recognition from diverse text types. In Proceed-
ings of the Conference on Recent Advances in Natural Language Processing
(RANLP-2001), Tzigov Chark, Bulgaria, September 2001.

[PDV00] Martin Peltzer, Jonathan J. Doyle, and Elizabeth A. Voight. German Com-
mercial Code: German-English Text with an Introduction in English. Verlag
Dr. Otto Schmidt, Köln, 4th revised edition, 2000.

[RSW02] Tony G. Rose, Mark Stevenson, and Miles Whitehead. The Reuters Corpus
Volume 1 - from yesterday’s news to tomorrow’s language resources. In
Proceedings of Third International Conference on Language Resources and
Evaluation (LREC 2002), pages 827–833, Las Palmas, Canary Islands, Spain,
May 2002. European Language Resources Association.

[Sch94] Helmut Schmid. Probabilistic part–of–speech tagging using decision trees.
In Proceedings of International Conference on New Methods in Language
Processing, pages 44–49, Manchester, UK, September 1994. TreeTagger is
available at http://www.ims.uni-stuttgart.de/∼schmid, accessed 2007-09-15.

[SKK00] Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of
document clustering techniques. In Workshop on Text Mining at the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 109–110, Boston, MA, USA, August 2000.

[Sul01] Dan Sullivan. Document Warehousing and Text Mining. John Wiley & Sons,
New York, Chichester, Weinheim, 2001.

[SW02] Myra Spiliopoulou and Karsten Winkler. Text Mining auf Handelsregister-
einträgen: Der SAS Enterprise Miner im Einsatz. In Klaus D. Wilde, Hajo
Hippner, and Melanie Merzenich, editors, Data Mining: Mehr Gewinn aus
Ihren Kundendaten, pages 117–124. Verlagsgruppe Handelsblatt, Düsseldorf,
2002.

[WF05] Ian H. Witten and Eibe Frank. Data Mining: Practical Mechine Learning
Tools and Techniques. Morgan Kaufman Series in Data Management Sys-
tems. Morgan Kaufmann Publishers, San Francisco, second edition, 2005.
Weka is available at http://www.cs.waikato.ac.nz/∼ml/weka, accessed 2007-
09-15.

[Win03] Karsten Winkler. Getting started with DIAsDEM Workbench 2.0: A case-
based approach. HHL Working Paper No. 58, HHL – Leipzig Graduate
School of Management, Leipzig, Germany, 2003. DIAsDEM Workbench 2.0
is available at http://www.hypknowsys.org/, accessed 2007-09-15.

115

Bibliography

[WS01a] Karsten Winkler and Myra Spiliopoulou. Extraction of semantic XML DTDs
from texts using data mining techniques. In Proceedings of the K-CAP 2001
Workshop on Knowledge Markup and Semantic Annotation, pages 59–68,
Victoria, BC, Canada, October 2001.

[WS01b] Karsten Winkler and Myra Spiliopoulou. Integrating data and probabilistic-
ally structured text documents. In Proceedings des 5. Workshops “Föderierte
Datenbanken” und GI Arbeitstreffen “Konzepte des Data Warehousing”
(FDBS 2001), pages 16–29, Berlin, Germany, October 2001.

[WS01c] Karsten Winkler and Myra Spiliopoulou. Semi-automated XML tagging of
public text archives: A case study. In Proceedings of EuroWeb 2001 “The
Web in Public Administration”, pages 271–285, Pisa, Italy, December 2001.

[WS02a] Karsten Winkler and Myra Spiliopoulou. Employing text mining for semantic
tagging in DIAsDEM. KI – Künstliche Intelligenz, 16(2):27–29, 2002.

[WS02b] Karsten Winkler and Myra Spiliopoulou. Structuring domain-specific text
archives by deriving a probabilistic XML DTD. In Proceedings of the 6th
European Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD’02), pages 461–474, Helsinki, Finland, August 2002.

[WS02c] Karsten Winkler and Myra Spiliopoulou. Text Mining in der Wettbewerber-
analyse: Konvertierung von Textarchiven in XML-Dokumente. In Data Min-
ing und Statistik in Hochschule und Wirtschaft: Proceedings der 6. Konferenz
der SAS-Anwender in Forschung und Entwicklung (KSFE), pages 347–363,
Dortmund, Germany, February/March 2002.

116

